PENGARUH KADAR MINYAK KELAPA TERHADAP MORFOLOGI DAN SIFAT THERMOSET RUBBER DENGAN FILLER ABU SAWIT - CARBON BLACK

Afrila¹⁾, Bahruddin² dan Ahmad Fadli²

¹⁾Mahasiswa Jurusan Teknik Kimia, ²⁾Dosen Jurusan Teknik Kimia Fakultas Teknik Universitas Riau Kampus Binawidya Jl. HR. Soebrantas KM 12,5 Pekanbaru Kode Pos 28293

email: afrila91@yahoo.co.id

ABSTRACT

Plasticizer and filler have important role to making thermoset rubber. The function of plasticizer is to assist spreading process of filler in rubber and to improve elasticity of thermoset rubber. Meanwhile function of filler is to increase mechanical properties of thermoset rubber. The purpose of this study is to obtain the best conditions of the vulcanization process in the manufacture of thermoset rubber with coconut oil as plasticizer and fly ash/carbon black as filler hybrid, which is the variation of cococnut oil content are 2,5 phr, 5 phr and 7,5 phr and filler hybrid FA/CB content are 30 and 50 phr with ratio 100/0, 50/50 and 30/70. The results of thermoset rubber will be tested, it's mecanical properties such as tensile strength, elongation at break, tension set, abrasion, hardness, and water absorption also thermoset rubber morphology. Based on average yield mecanical properties and morphology tested is obtained that the best conditions vulcanization process is thermoset rubber with coconut oil content 5 phr and filler hybrid content of 30 phr with ratio FA/CB of 30/70. The best mechanical properties was given on tensile strength 24,8 MPa, elongation at break 816 %, tension set 2,17%, hardness 54±5 shore A, abrasion resistance 0,14 mm³/kg and also for water absorption 0,59%

Keyword: Carbon Black, Fly Ash, Filler, Plasticizer, Thermoset Rubber, Vulcanization

Pendahuluan

Sampai saat ini karet alam masih berperan penting dalam ekspor Indonesia. Indonesia merupakan produsen karet alam terbesar kedua di dunia setelah Thailand, namun potensi pengembangan karet di Indonesia masih belum dimanfaatkan secara maksimal karena usaha karet di Indonesia masih tergolong kurang maju dibandingkan dengan kemajuan produksi dan teknologi karet dari negara lain. Maka dari itu meningkatkan kualitas untuk karet Indonesia, perlu adanya suatu usaha pengembangan produk karet supaya kualitas karet lebih baik. Salah satu pengembangan produk dari karet alam adalah thermoset rubber (TR). TR memiliki beberapa kelebihan sehingga sangat cocok sebagai bahan dalam pembuatan ban (Graham dan Zhang, 2008). TR memiliki potensi yang besar untuk dikembangkan melihat dari kelebihan TR dibanding dengan pengembangan produk

karet yang lain. Dari beberapa penelitian mengenai TR diketahui bahwa penambahan dan filler berperan penting plasticizer terhadap sifat mekanik karet dan juga dapat meningkatkan fleksibilitas dari polimer. Filler yang komersil digunakan dalam pembuatan TR adalah filler carbon black. Hal ini disebabkan oleh ukuran carbon black yang kecil sehingga interaksi antara filler dengan karet lebih mudah. Akan tetapi penggunaan carbon black yang terus menerus akan meningkatkan biaya produksi pembuatan TR. Sehingga dicari alternatif filler yang lain yaitu abu sawit. Penggunaan abu sawit sebagai pengganti silika murni dapat mengurangi biaya produksi thermoset rubber. Dalam 1 hari dihasilkan 2 ton abu sawit hasil sisa pembakaran bahan bakar (serabut dan cangkang) di boiler pada pabrik crude palm oil (CPO) (PT. Perkebunan Nusantara V, 2011). Penelitian ini diharapkan agar filler hybrid abu sawit - carbon black dapat meningkatkan ketahanan sobek dan mempertahankan sifat elastis TR sehingga kualitas TR semakin baik.

Bahan dan Metodologi Penelitian Bahan dan Alat

Bahan baku yang digunakan dalam penelitian ini adalah karet alam jenis SIR-20, abu sawit ukuran nanometer, carbon black N220, maleated natural rubber (MNR) sebagai *coupling agent*, minyak kelapa sebagai plasticizer, sulfur, mercapto dibenzothiazyl disulfide (MBTS), zinc oxide asam stearat. trimethylquinone (ZnO), (TMQ). Untuk pembuatan Maleated Natural Rubber digunakan bahan yaitu karet alam, maleated anhidrat, toluene, dan acetone. Alat yang digunakan yaitu ball mill, roll mill, internal mixer, Hot Press, Dumbell, oven, blender, ayakan 200 mesh, alumunium foil, timbangan analitik, universal testing machine, scanning electron microscope.

Penyiapan Filler

Abu sawit diperoleh dari pabrik *Crude Palm Oil* (CPO) yang berada di Sorek, Pekanbaru (PT. Sarikat Putra Riau). Abu sawit (*fly ash*) yang akan digunakan dioven terlebih dahulu dengan suhu ±100 °C untuk mendapatkan berat kostan kemudian disaring menggunakan ayakan 200 mesh dilakukan pada Laboratorium Teknologi Bahan, Teknik Sipil, Universitas Riau, kemudian abu sawit di *mechanical milling* menjadi ukuran 700 – 800 nm menggunakan alat *ballmill. Filler hybrid* dibuat dengan mencampurkan abu sawit (*fly ash*) dengan *carbon black* N220, dengan rasio massa AS/CB 100/0, 50/50, 30/70

Penyiapan Maleated Natural Rubber

Karet alam dipotong kecil-kecil ±1cm kemudian dikeringkan dalam oven pada temperatur 40°C selama 24 jam. Karet alam dimastikasi di dalam *internal mixer* jenis Banbury Type B60 B selama 10 menit dengan temperatur 160°C dan kecepatan rotor 60 rpm. Setelah dimastikasi ditambahkan maleat anhidrida (MAH) 8 phr dan diaduk dalam mixer selama 10 menit. MAH yang tidak ter*grafting* pada karet alam dihilangkan melalui proses ekstraksi dengan cara merefluks

dengan toluen pada suhu 100°C selama 6 jam. Selanjutnya *maleated natural rubber* (MNR) yang telah bebas MAH dicuci dengan menggunakan aseton dan dikeringkan di dalam oven pada temperatur 40°C selama 24 jam (Putra, 2013)

Penyiapan Kompon Karet

Proses penyiapan kompon karet dapat dilakukan dengan cara yaitu karet dimastikasi dengan menggilingnya dalam *roll mill* sampai teksturnya halus dan lunak. Karet ditambahkan dengan bahan aditif pada suhu kamar dengan kecepatan putaran *roll* 20 rpm. Bahan untuk proses pencampuran ditunjukan pada tabel 1.

Tabel 1. Bahan Dan Kuantitas Pembuatan Kompon Karet

No	Bahan	Kuantitas	
1	Karet (NR)	150 gr	
2	Penambahan <i>plasticizer</i>	2,5;5;7 phr	
3	Penambahan MNR	3 phr	
4	Filler	30, 50, 70 phr	
5	Nisbah <i>Filler</i>	100/0; 50/50	
	(Abu Sawit/Carbon Black)	dan 30/70	
6	Penambahan ZnO	5 phr	
7	Penambahan asam stearat	3 phr	
8	Penambahan TMQ	1 phr	
9	Penambahan MBTS	0,6 phr	
10	Penambahan Sulfur	3 phr	

Proses Vulkanisasi

Vulkanisasi merupakan suatu proses pembentukan polimer untuk saling bertautan lain (crosslinking). satu sama **Proses** vulkanisasi kompon dilakukan menggunakan hot press dengan membentuknya seperti lembaran flat. Kompon dibentuk lembaran dan dipotong sebesar ukuran cetakan (spisel) berbentuk lingkaran dengan diameter 20 cm dan ketebalan 2 mm. Kedua permukaan spisel ditutupi dengan glossing plate yaitu logam datar yang terbuat dari aluminium. Alat hot press diset pada suhu 150°C, kemudian sampel yang telah berada didalam cetakan dipress dengan tekanan 200 kgf/cm² selama 15 menit. Sampel yang terbentuk merupakan kompon yang telah mengalami vulkanisasi (Saktiani, 2012)

Pengujian Sampel

Uji Tarik (Tensile Strength dan Elongation at Break)

Pengujian sifat mekanik meliputi tensile strength dan elongation at break. Alat yang digunakan untuk melakukan uji tensile adalah Universal **Testing** Machine Penyiapan sampel dilakukan dalam dua tahap yaitu pembuatan spesimen uji (ISO 527-2 type 5A) dan proses uji tarik (tensile testing). Spesimen uji di bentuk mengunakan alat dummbel sesuai dengan ISO 527-2 type 5A. Spesimen dipotong dari setiap titik pada lembaran sampel dan minimal berjumlah 5 spesimen. Spesimen tersebut diuji tarik dengan kecepatan 500 mm/menit. Hasil uji tarik yang diperoleh berupa grafik hubungan tegangan (stress) terhadap regangan (strain) dari masing-masing spesimen uji.

Tension Set

Tension set diukur menggunakan UTM. Pengujian ini dilakukan pada suhu kamar, sampel dilakukan peregangan selama 10 menit pada 100% elongasi menurut ASTM D 412-98 (Chatterjee dan Naskar, 2007).

Uji Hardness

Hardness dilakukan untuk mengetahui besarnya kekerasan material dengan penekanan tertentu. Alat yang digunakan untuk melakukan uji kekerasan, yaitu Hardness Tester ISO R 868 A.

Uji Abrasi

Sebelum melakukan uji abrasi, material yang akan diuji dimasukkan ke dalam cetakan, lalu di-press pada suhu 150 °C dan tekanan 200 kgf/cm². Sampel yang sudah di-press didinginkan pada suhu kamar, kemudian ditimbang sebagai berat awal sampel dan sampel juga ditimbang di dalam air untuk dapat diketahui densitasnya. Setelah diketahui densitasnya, sampel diabrasi menggunakan alat Abrasi DIN 53516, kemudian ditimbang.

Uji Penyerapan Air

Sampel yang akan diuji sebelumnya dipotong kecil-kecil dengan ukuran 1 cm x 1 cm. Sampel tersebut ditimbang beratnya terlebih dahulu dan direndam dalam *aquadest*

pada suhu kamar dan ditimbang dengan selang waktu 24 jam. Perendaman ini terus dilakukan hingga massa dari sampel tersebut konstan. Berat konstan sesudah perendaman dikurangi dengan berat sebelum perendaman sehingga dengan begitu diketahui kadar serapan airnya (Ismail dkk, 2005). Persentase serapan air ini dihitung dengan menggunakan persamaan sebagai berikut:

Penyerapan air =
$$\frac{W_b - W_k}{W_k} \times 100\%$$

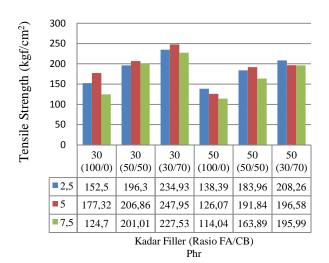
Sumber: Ismail dkk (2005)

dimana: Wk = berat sampel kering (gr)

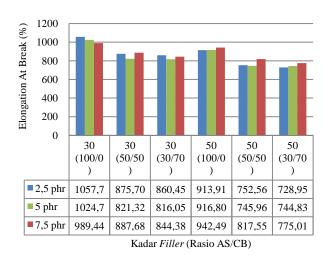
Wb= berat sampel setelah direndam

air (gr)

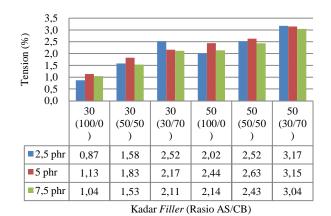
Analisa SEM

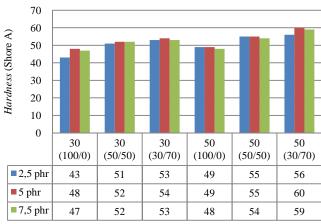

Sebelum dilakukan analisa SEM (Scanning Electron Microscope), sampel yang akan discan terlebih dahulu direndam didalam nitrogen cair selama ± 2 menit. Sampel yang telah direndam nitrogen cair dipatahkan dan dilapisi platina (coating platina). Perbesaran morfologi sampel dilakukan untuk dapat mengamati distribusi filler didalam kompon karet dengan cukup jelas. Morfologi thermoset rubber diamati dengan 3 kali perbesaran (sartono, 2006)

3. HASIL DAN PEMBAHASAN

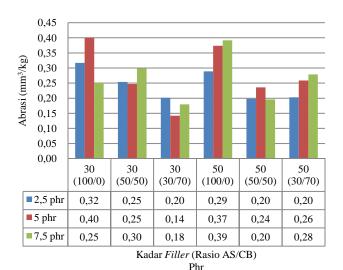

Hasil penelitian *Thermoset Rubber*, serta analisa data percobaan akan diuraikan dalam bab ini. Dalam penelitian ini, variable berpengaruh yang dipelajari adalah pengaruh *plasticizer* minyak kelapa dan kadar serta rasio dari *filler hybrid abu sawit/carbon black*. Dengan melihat pengaruhnya, maka diperoleh hasil berupa sifat mekanik dan morfologi *Thermoset Rubber*.

Sifat Mekanik


Parameter yang diuji dalam menilai sifat mekanik thermoset rubber adalah nilai tensile strength, elongation at break, tension set, hardness dan abrasion resistance. Hasil analisa sifat mekanik thermoset rubber dengan variasi plasticizer minyak kelapa dan kadar serta rasio dari filler hybrid abu sawit/carbon black yang digunakan dapat dilihat pada Gambar 3.1, 3.2, 3.3, 3.4 dan 3.5.


Gambar 3.1 Pengaruh Kadar *Plasticizer* dan *Filler Hybrid* Terhadap *Tensile Strength Thermoset Rubber*

Gambar 3.2 Pengaruh Kadar *Plasticizer* dan *Filler Hybrid* Terhadap *Elongation At Break Thermoset Rubber*



Gambar 3.3 Pengaruh Kadar *Plasticizer* dan *Filler Hybrid*Terhadap *Tension Set Thermoset Rubber*

Kadar Filler (Rasio AS/CB)

Gambar 3.4 Pengaruh Kadar Plasticizer dan Filler Hybrid Terhadap Hardness Thermoset Rubber

Gambar 3.5 Pengaruh Kadar *Plasticizer* dan *Filler Hybrid* Terhadap *Abrasion Resistance Thermoset Rubber*

Gambar 3.1 dan 3.2 menunjukkan variasi nilai tensile strength dan elongation at break dari thermoset rubber dengan penambahan minyak kelapa. Nilai tensile strength maksimum diperoleh pada kadar minyak kelapa 5 phr dan kadar filler hybrid 30 phr dengan rasio AS/CB 30/70 yaitu 247,95 kgf/cm². Hal ini disebabkan oleh kandungan asam lemak yang lebih banyak di minyak kelapa dibanding dengan minyak jarak. Menurut Wilson (1995) plasticizer yang memiliki jumlah kandungan asam lemak lebih banyak, dalam kuantitas yang kecil dapat digunakan sebagai activator. Selain itu, tensile strength yang lebih baik didapatkan karena *filler* tersebar secara merata pada rubber. Raju dkk (2007)thermoset

menggunakan minyak kelapa sebagai plasticizer dengan kadar 6 phr dan carbon black sebagai filler dengan kadar 45 phr menghasilkan nilai tensile strength tertinggi yaitu 28 MPa yang lebih besar dari penelitian ini. Hal ini dikarenakan penggunaan jenis karet alam dan bahan pencampuran yang berbeda. Lili Saktiani (2012) menggunakan plasticizer minarex 2,5 phr dan filler hybrid 30 dengan rasio AS/CB menghasilkan nilai tensile strength tertinggi vaitu 19,6 MPa. Hal ini membuktikan bahwa nilai tensile strength dipengaruhi oleh penambahan kadar plasticizer dan filler.

Pada penambahan minyak kelapa yang sedikit. platicizer tidak memberikan kesenjangan antar molekul karet yang cukup sehingga memungkinkan filler tidak tersebar merata dan tensile strength yang dihasilkan tidak terlalu baik. Selain itu penambahan plasticizer dalam jumlah besar menyebabkan free volume yang terbentuk akibat hanya diisi oleh plasticizer saja. Akibatnya, *filler* yang seharusnya terdistribusi ke dalam free volume tersebut tidak saling mengikat dan terjadi aglomerasi. Hal ini mengakibatkan kekuatan interaksi filler melemah, sehingga jarak antara filler menjadi jauh. Pada gambar 3.2 nilai elongation at meningkat sebanding peningkatan kadar abu sawit yang digunakan. Penambahan kadar filler hybrid juga sangat mempengaruhi nilai elongation at break thermoset rubber. Nilai elongation at break ini dipengaruhi oleh kadar filler carbon black. Struktur dari carbon black yang besar dapat viskositas meningkatkan dari kompon thermoset rubber sehingga kemampuan carbon black untuk meningkatkan elongation at break menjadi berkurang.

Nilai tension dan set hardness menunjukkan penambahan yang signifikan dengan penambahan kadar carbon black yang ditambahkan (Gambar 3.3 dan 3.4). Carbon black memiliki struktur yang besar sehingga dapat meningkatkan viskositas dari kompon sehingga cenderung thermoset rubber meningkatkan kekerasan (hardness). Kekerasan inilah yang menurunkan nilai elastisitas material sehingga nilai tension set pada material tersebut meningkat. Plasticizer dapat meningkatkan interaksi filler dengan

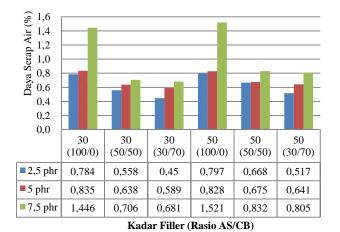
polimer menjadi lebih mudah. *Platicizer* akan memberikan kesenjangan antar molekul karet sehingga memungkinkan karet memiliki rongga untuk penempatan *filler* dan bahan aditif.

Pada Gambar 3.5 thermoset rubber yang menggunakan filler abu sawit saja memiliki nilai abrasi yang besar dibanding dengan menggunakan filler hybrid. Hal ini menunjukkan bahwa ikatan antara abu sawit dengan karet yang lemah sehingga material lebih mudah terkikis. Ukuran abu sawit yang besar dan unsur silika di dalamnya lebih cenderung berikatan dengan unsur silika lain yang bersifat polar sehingga menyebabkan aglomerasi merupakan salah satu penyebabnya. Selain itu penambahan plasticizer terus menerus dapat menyebabkan free volume vang terbentuk akibat hanya diisi oleh plasticizer saja. Akibatnya, filler yang seharusnya terdistribusi ke dalam free volume tersebut tidak saling mengikat dan terjadi aglomerasi. Hal ini mengakibatkan kekuatan interaksi filler melemah karena jarak antara filler menjadi jauh sehingga nilai abrasi material tersebut semakin tinggi.

Sampel thermoset rubber vang menggunakan filler hybrid abu sawit/carbon black dengan penambahan kadar plasticizer ini dapat direkomendasikan sebagai material thermoset rubber yang baik digunakan sebagai kompon ban dalam kendaraan bermotor karena memiliki rata-rata nilai tensile strength yang lebih besar dari 11,8 MPa dan *elongation at break* besar dari 500% 06-1542-2006). Dan (SNI juga digunakan sebagai kompon untuk sol sepatu dengan tensile strength minimal 5 N/mm² dan elongation at break minimal 100% dan kompon sol luar sepatu dengan tensile strength 4,9 N/mm² dan elongation at break minimal 100% seperti yang terlihat pada Tabel 2. Sifat mekanik themoset rubber yang dihasilkan pada penelitian ini tergolong baik. Perbandingan sifat mekanik yang dihasilkan pada penelitian dengan penelitian lain dapat dilihat pada Tabel 3.

Tabel 2 Standar Mutu Untuk Beberapa Produk Thermoset Rubber

No.	Jenis uji	Standar Mutu Kompon Ban Dalam Kendaraan Bermotor (SNI 06- 1542-2006)	Standar Mutu Kompon Sol Sepatu (SNI 12- 0172-1987)	Standar Mutu Kompon Sol Luar Sepatu (SNI 12- 0172-2005)	Penelitian ini
1	Tensile strength (N/mm²)	Min 11,8	Min 5	Min 4,9	24,8
2	Elongation at break (%)	Min 500	Min 100	Min 100	816
3	Tension Set 100% (%)	Maks 7,5	Maks 10	-	2,17
4	Berat Jenis (g/cm ³)	1,00 - 1,25	Maks 1,5	Maks 1,5	1,06
5	Kekerasan (Shore A)	50 ± 5	55 - 75	55 - 75	54 ± 5
6	Abrasion Resistance (mm ³ /kg)	-	Maks 2,5	Maks 2,5	0,14


Tabel 3 Perbandingan Sifat Mekanik *Thermoset Rubber*

Keterangan	Raju P dkk (2006)	Raju P dkk (2007)	Weni (2011)	Lili (2012)	Isra (2013)	Penelitian ini
Filler yang digunakan	Carbon Black	Carbon Black	Abu Sawit	Carbon Black/abu sawit	Carbon Black/abu sawit	Carbon Black/abu sawit
Rasio massa filler hybrid (phr)	-	-	-	70/30	70/30	70/30
Kadar <i>filler</i> (phr)	45	45	30	30	30	30
Plasticizer	Minyak Jarak	Minyak Kelapa	Minarex	Minarex	Minarex	Minyak Kelapa
Coupling agent	Tidak	Tidak	Tidak	Tidak	Iya	Iya
Tensile strength (MPa)	19,8	28	15	19,6	17,82	24,8
Elongation at break (%)	630	820	2040	1500	1234,7	816
Modulus elastic (MPa)	5,9	1,5	1,3	0,75	1,0865	-
Hardness (Shore A)	-	51	-	-	-	54 ± 5

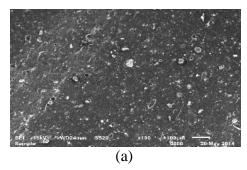
Raju dkk (2007) dengan menggunakan filler carbon black 45 phr dan menggunakan plasticizer minyak kelapa menghasilkan sifat mekanik yang lebih baik. Tensile strength yang diperoleh 28 MPa dan elongation at break 820%. Tensile strength dan elongation at break yang diperoleh oleh Raju dkk lebih tinggi karena menggunakan karet dengan ISNR 5 dan menggunakan filler carbon black saja.

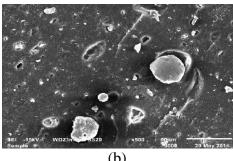
Uji Penyerapan Air

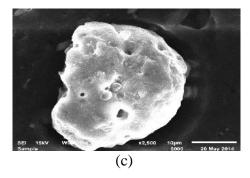
Selain melakukan pengujian terhadap sifat mekanik thermoset rubber, dilakukan pengujian terhadap sifat fisik material yaitu dengan uji penyerapan air Uji penyerapan air merupakan uji yang dilakukan pada suatu material untuk mengetahui kemampuan daya serap air pada material tersebut. penyerapan air yang terjadi besar maka secara tidak langsung akan berpengaruh kepada kualitas produk yang akan dibuat dari thermoset rubber tersebut. Terutama dalam pengaplikasan produk ban dalam sepeda motor, sol sepatu dan lain-lain. Hasil analisa uji penyerapan air pada thermoset rubber dengan menggunakan filler hybrid AS/CB untuk 18 sampel dan penambahan kadar plasticizer minyak kelapa dapat dilihat pada Gambar 3.6

Gambar 3.6 Pengaruh P*lasticizer* dan *Filler Hybrid* Terhadap Daya Serap Air *Thermoset Rubber*

Berdasarkan hasil yang diperoleh, penambahan kadar *plasticizer* terus menerus dapat meningkatkan persentase daya serap air terhadap *thermoset rubber*. Hal ini disebabkan oleh penambahan *plasticizer* yang terlalu banyak sehingga dapat menyebabkan free volume yang terbentuk akibat hanya diisi oleh plasticizer saja. Akibatnya, filler yang seharusnya terdistribusi ke dalam free volume tersebut tidak saling mengikat dan terjadi lubang pada karet. Hal ini menyebabkan air lebih mudah masuk ke dalam karet.


Selain *plasticizer*, penambahan kadar filler hybrid juga sangat mempengaruhi nilai daya serap air thermoset rubber. Sampel thermoset rubber yang menggunakan filler abu sawit memiliki daya serap air lebih tinggi dibanding dengan filler hybrid secara keseluruhan. Menurut Saowapark, kadar silika yang tinggi cenderung meningkatkan kadar air yang terserap karena silika bersifat hydroscopic. Selain itu pada abu sawit terdapat kalsium maupun magnesium yang dapat bereaksi dengan air. Namun kadar persentase senyawa ini tidak begitu banyak terdapat pada abu sawit. Jika kadar air yang terserap sedikit maka secara tidak langsung berpengaruh kepada akan besarnva kemungkinan sampel untuk diaplikasikan dalam produk produk ban dalam sepeda motor, sol sepatu dan lain-lain.


Morfologi Thermoset Rubber


Uji Morfologi atau uji SEM (Scanning Microscopy) thermoset dilakukan untuk mengetahui persebaran filler abu sawit/carbon black vang berpengaruh pada sifat thermoset rubber tersebut. Skala pembesaran vang akan digunakan untuk penelitian ini adalah pembesaran 100, 500 dan 2500 kali. Sampel yang diuji SEM adalah sampel mempunyai sifat thermoset rubber yang terbaik yaitu sampel pada penambahan kadar plasticizer 5 phr dan kadar filler hybrid 30 phr dengan rasio AS/CB 30/70.

Gambar 4.7.(a) dengan perbesaran 100 kali bertujuan untuk melihat penyebaran *filler* pada karet. Dari gambar dapat diketahui bahwa penyebaran filler yang cukup merata pada *thermoset rubber* dengan kadar *plasticizer* 5 phr dan kadar *filler hybrid* 30 phr rasio AS/CB 30/70. Dari hasil *tensile strength* juga menunjukan bahwa penggunaan optimum untuk kadar *plastizier* minyak kelapa dengan *filler hybrid* sesuai dengan gambar yang ditampilkan bahwa *plastisizer*

membantu penyebaran *filler* dan dapat meningkatkan sifat mekanik dan morfologi yang baik (Alexander, 2007).

Gambar 3.6 Micrograph SEM *Thermoset Rubber* dengan Kadar *Plasticizer* 5 Phr dan Kadar *Filler Hybrid* 30 Phr Rasio AS/CB 30/70 (a) Perbesaran 100x, (b) Perbesaran 500x dan (c) Perbesaran 2500x

Gambar 4.7 (b) dan (c) dengan perbesaran 500 dan 2500 kali menunjukkan interaksi antara polimer dan filler, masih terdapat rongga kosong antara polimer dan filler hybrid. Rongga kosong terjadi karena kecenderungan abu sawit yang membentuk aglomerasi dikarenakan silika pada abu sawit memiliki gugus hidroksil yang akan berusaha membantu ikatan hidrogen dengan molekul silika atau material kimia lain yang bersifat polar. Aglomerasi juga dapat terjadi karena pencampuran yang dilakukan menggunakan roll mill kurang homogen. Hal ini mungkin saja terjadi karena persebaran

filler dan bahan aditif lain yang kurang merata pada saat pembentukan kompon karet. Sehingga mengakibatkan ikatan crosslink karet yang divulkanisasi pada spesimen cepat terlalu terjadi. tersebut Laju pembentukan ikatan crosslink tergantung pada jumlah sulfur, bahan akselarator dan kemudahan interaksi antar partikel karet pada saat vulkanisasi. Namun secara keseluruhan campuran yang terbentuk cukup homogen dan seragam.

Kesimpulan

Thermoset Rubber dengan sifat mekanik terbaik diperoleh pada saat penambahan kadar plasticizer minyak kelapa 5 phr dan filler hybrid 30 phr dengan rasio AS/CB 30/70 dengan tensile strength 24,8 MPa, elongation at break 816 %, Tension Set 2,17%, Hardness 54±5 Shore A dan Abrasion Resistance 0,14 mm³/kg. Thermoset Rubber yang dihasilkan dalam penelitian ini dapat direkomendasikan sebagai bahan kompon ban dalam kendaraan bermotor (SNI 06-1542-2006) dan sebagai kompon sol sepatu (SNI 12-0172-1987).

Saran

Pada saat pembuatan kompon karet, diusahakan *filler* dan bahan aditif lain disebarkan secara merata dan menyeluruh pada karet sehingga saat penggilingan di *roll mill* karet dengan bahan aditif lain tercampur merata. Selain itu, pada saat penggilingan kompon di *roll mill*, usahakan suhu *roll mill* tidak terlalu tinggi. Hal ini akan menyebabkan kompon tervulkanisasi lebih awal dan tidak merata sehingga menyebabkan sifat mekanik *thermoset rubber* menjadi turun.

UCAPAN TERIMA KASIH

Penulis mengucapkan terima kasih kepada pihak INABEC PT Karet Ngagel khususnya pak Tedjo dan Pak Wawan di Surabaya yang mengijinkan penulis melakukan pengujian sampel dan membantu penulis. Terima kasih juga kepada Asisten Pembimbing Kak Lili Saktiani yang telah banyak membantu dalam proses penelitian ini dan juga teman-teman penelitian Hara Novarisa Nanda, Mery Christina dan Ricky Arie Andy yang telah turut membantu penelitian ini.

DAFTAR PUSTAKA

- Alexander, M., P. Kurian., and E. T. Thachil. (2007). *Effectiveness of Cardanol as Plasticizer for Silica-Filled Natural Rubber*. Proquest Science Journals 1(23), 43-45
- Chatteriee. K., Naskar. K. (2007).Development Of *Thermoplastic* Elastomers OnMaleated Based Ethylene Propylene Rubber (M-EPM) And Polypropylene (PP) By Dynamic Vulcanization. eXPRESS Polymer Letters Vol.1, No.8 (2007) 527-534.
- Graham & Zhang. (2008). Rubber Products-Thermoset Rubber, http://www.china mould.com. 18 Maret 2013.
- Putra, A. (2013). Pengaruh Waktu dan Suhu reaksi Grafting pada Proses Pembuatan Maleated Natural Rubber. Prosiding Seminar Nasional Teknologi Kimia Teknologi Oleokimia & Petrokimia Indonesia. Pekanbaru. Riau
- Raju, P., Nandanan, V. & Kutty, S. K.N. (2006). A Study on the Use of Castor

- Oil as Plasticiser in Natural Rubber Compounds. Department of Polymer Science and Rubber Technology. Cochin University of Science and Technology. Kochi, Kerala. India.
- Raju, P., Nandanan, V. & Kutty, S. K.N. (2007). A Study on the Use of Coconut Oil as Plasticiser in Natural Rubber Compounds. Department of Polymer Science and Rubber Technology. Cochin University of Science and Technology. Kochi, Kerala. India.
- Saktiani, L. (2012). Pengaruh Kadar Dan Rasio Massa Filler Hybrid Carbon Black/Abu Sawit Terhadap Morfologi Dan Sifat Material Karet Alam Vulkanisat. Skripsi Sarjana. Fakultas Teknik Jurusan Teknik Kimia. Universitas Riau. Indonesia.
- Saowapark, T. (2005). Reinforcement of Natural Rubber with Silica/Carbon Black Hibrid Filler. Thesis. Mahidol University.