Pengaruh Laju Pengadukan dalam Pembuatan Bioetanol dari Limbah Serabut Buah Sawit Menggunakan Saccharomyces cerevisiae

Edie Jeckson*, Adrianto Ahmad**, Sri Rezeki Muria**

*Alumni Teknik Kimia Universitas Riau, **Jurusan Teknik Kimia Universitas Riau
Kampus Binawidya Km. 12,5 Simpang Baru, Pekanbaru 28293

ediejeckson@gmail.com

ABSTRACT

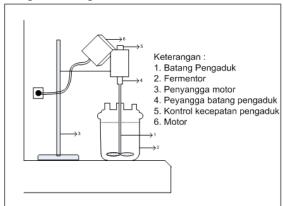
The development of new and renewable energy resources of government's strategies to reduce CO_2 emission from industry waste and declining for national dependence of oil fuel. One of alternative energy that use to substitute a fuel oil is bioethanol. Palm fruit fibre waste is the one of potential source because of the biggest feedstock in Indonesia and the less uses that waste well. Some of type process used to convert bioethanol from industry waste, such as fermentation. The purpose of this experiment is decide the effect of fermentation in bioethanol production from palm fruit fibre waste to get an optimum bioethanol product. This experiment had pretreatments like delignification with ash extract palm fruit bunch and purification with H_2O_2 3% that were used to remove lignin in palm fruit fibre waste compound to get a lot of cellulose compound. The fermentation that use in this experiment is Separate Hydrolysis Fermentation (SHF) which is hydrolysis and fermentation done separately. Hydrolysis process using H_2SO_4 2 M for convert cellulose become glucose then will be done by anaerob fermentation by Saccharomyces cerevisiae. The variation of agitation speed (100, 150, 200, and 250 rpm) while fermentation learned to get an optimum bioethanol percentage. The result of experiment showed that in agitation speed at 200 rpm while 96 hours can convert a bioethanol 5 % (v/v) 39,465 g/L.

Keywords: Agitation speed, bioethanol, delignification, Saccharomyces cerevisiae, palm fruit fibre waste, purification, SHF (Separate Hydrolysis Fermentation)

I. Pendahuluan

Peningkatan penggunaan bahan bakar minyak di Indonesia berkembang secara pesat seiring dengan pertumbuhan ekonomi yang pesat pula. Hal ini menjadi pertimbangan manusia dalam mencari alternatif untuk menghasilkan bahan bakar yang diperoleh selain dari minyak bumi yang semakin hari semakin berkurang. Salah satu bahan bakar alternatif saat ini yang sedang diluncurkan adalah bioetanol. Bioetanol dalam penelitian ini dibuat dengan memanfaatkan limbah padat serabut sawit sehingga menjadi nilai dalam menjadikannya sebagai positif bahan bakar alternatif pengganti bahan minvak. Serabut buah bakar merupakan salah satu limbah terbesar yang dihasilkan dalam proses minyak sawit di Indonesia, yaitu sebesar 10,752 juta ton (Jati, 2011). Kandungan yang dapat dimanfaatkan dalam serabut buah sawit menjadi bioetanol adalah selulosa dengan kadar sebesar 34,3 %. Kandungan lignin juga terdapat didalam serabut buah sawit, dan sangat mengganggu dalam proses fermentasi. Maka perlu dilakukan proses pretreatment, delignifikasi, dan pemurnian selulosa yang mampu memutuskan ikatan lignin lebih maksimal.

Salah satu proses fermentasi bioetanol adalah SHF (Separate *Hydrolysis* Fermentation) yang dilakukan secara dihasilkan biasanya adalah pelepah, terpisah antara hidrolisis dan fermentasi. Hidrolisis menggunakan asam merupakan salah satu proses tertua, simple dan lebih efisien dalam memproduksi bioetanol dari biomassa (Cheng, 2007). Proses hidrolisis mengkonversi selulosa dalam biomassa menjadi larutan gula yang bisa dikonversi menjadi bioetanol melalui fermentasi oleh *Saccharomyces cerevisiae*. Proses fermentasi gula menjadi bioetanol memanfaatkan 6-karbon gula yang dapat dilihat pada reaksi berikut:


$$C_2H_{12}O_6 \rightarrow 2C_2H_5O + 2CO_2 \dots (1)$$

Glukosa Bioetanol Karbon dioksida

Penelitian ini bertujuan untuk mempelajari variasi kecepatan pengadukan (100, 150, 200, dan 250 rpm) dalam memrpoduksi bioetanol yang maksimal oleh *Saccharomyces cerevisiae*. Waktu pengambilan sampel dilakukan selama 12, 24, 48, 72, 96 dan 108 jam.

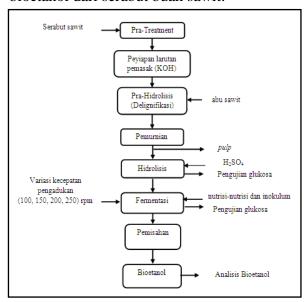
II. Metodologi

2.1 Alat yang digunakan

Alat-alat yang digunakan dalam penelitian ini adalah *autoclave*, bioreaktor fermentor, rotor pengaduk, *orbital shaker*, *vortex mixer*, *rotary evaporator*, dan labu didih dasar bulat leher tiga. Reaksi pembentukan bioetanol dari glukosa terjadi didalam bioerekator fermentor yang dirangkai sebagai berikut:

Gambar 2.1 Rangkaian alat Fermentasi

2.2 Bahan yang digunakan


Bahan baku yang digunakan dalam penelitian ini adalah serabut buah sawit, ektrak abu TKS, H₂O₂ 3%, H₂SO₄ 2 M, *Saccharomyces cerevisiae*, KH₂PO₄, MgSO₄.7H₂O, (NH₄)₂SO₄, antron.

2.3 Variabel Penelitian

Variabel tetap dalam penelitian ini adalah ukuran partikel \pm 0,1-0,5 cm, nisbah bahan baku dan ekstrak abu TKS 1:10 pada proses delignifikasi, serta nisbah bahan baku dan H_2O_2 1:5 (1 jam) pada proses *bleaching*. Variabel berubah penelitian ini adalah kecepatan pengadukan (100, 150, 200, 250 rpm).

2.4 Rancangan Percobaan

Pada penelitian ini melalui 4 tahap pemrosesan, yaitu persiapan bahan baku (delignifikasi dan pemurnian). tahap hidrolisis. tahap fermentasi. tahap Pada penelitian ini yang pemisahan. dijadikan pusat kajian adalah variasi kecepatan pengadukan. Kecepatan pengadukan ini harus diperhatikan kinerjanya karena sangat mempengaruhi hasil fermentasi. Fermentasi dilakukan dalam 2 langkah kegiatan vakni penyediaan inokulum dan fermentasi. Berikut prosedur pelaksanaan penelitian bioetanol dari serabut buah sawit:

Gambar 2.2 Prosedur Penelitian dalam Pembuatan Bioetanol

2.4 Pretreatment (Persiapan Serabut buah sawit)

Serabut buah sawit yang digunakan berasal dari PTPN V yang berlokasi di Kampar, Riau. Serabut buah sawit direndam dan dicuci dengan air bersih untuk memisahkan partikel pasir dan abu yang terikut bersama serabut sawit. Bahan kemudian dijemur dengan memanfaatkan sinar matahari langsung untuk mengeringkan bahan agar dilanjutkan kedalam proses pengecilan ukuran bahan (pretreatment) sebesar $\pm 0,1-0,5$ cm.

2.5 Penyiapan Larutan Pemasak (Ekstrak Abu TKS)

Abu tandan kosong sawit dari hasil pembakaran tandan kosong sawit dalam incinerator pada pabrik CPO. Mula-mula abu TKS disaring menggunakan saringan berukuran 100 mesh. Abu yang lolos kemudian ditambahkan saringan dengan perbandingan massa abu dan air 1:4. Larutan tersebut selanjutnya diaduk selama 15 menit sebelum didiamkan selama 48 jam hingga semua terendapkan. Larutan hasil ekstrak diperoleh dengan memisahkan endapan abu dari larutan, kemudian larutan tersebut disiapkan sebagai larutan pemasak pada proses delignifikasi (Padil, 2011).

2.6 Delignifikasi dan Pemurnian

Bahan dimasak sebanyak 100 gram menggunakan larutan pemasak (abu TKS) dengan perbandingan 1:10 (Padil, 2011). Pemasakan dilakukan didalam labu didih leher tiga yang dipanaskan sebesar 100°C selama iam dihubungkan vang kondensor dalam unit pemasakannya. Proses pemurnian selulosa menggunakan larutan H₂O₂ 3% dengan perbandingan 1:5 selama 1 jam dan suhu 50-60°C (Padil. 2011). delignifikasi Padatan hasil dimasukkan kedalam labu didih leher tiga bulat dengan H_2O_2 dihubungkan dengan kondensor. Hasil pemurnian selulosa akan dicuci kembali menggunakan aquades dan diperas untuk menghilangkan sisa lignin yang tertinggal. selulosa ini Tahap pemurnian akan menghasilkan perubahan warna dari cokelat menjadi putih.

2.7 Hidrolisis Asam

Padatan hasil pemurnian selulosa hidrolisis akan dikakukan proses menggunakan larutan H₂SO₄ 2 M selama 3 jam (Kardono, 2010). Perbandingan substrat dengan larutan pemasak (H₂SO₄) adalah 1:20. Hasil hidrolisis akan disaring dan dipisahkan filtratnya untuk dilakukan proses selanjutnya yakni proses fermentasi. Hasil yang berupa glukosa ini akan dianalisis kadar glukosanya dengn spektofotometer (Siswati, 2010).

2.8 Persiapan Yeast Inokulum

Pembuatan inokulum dilakukan dalam erlenmeyer sebanyak 10% dari total volume yang difermentasikan yang terdiri dari Sacchamromyces cerevisae 0,2 g/L, KH₂PO₄ 0,02 g/L, MgSO₄.7H₂O 0,02 g/L, dan $(NH_4)_2SO_4$ 0,02 g/L. Sebelum diinokulasi, medium disterilisasi menggunakan *autoclave* pada tekanan 15 psi dan temperature 121°C yang diatur alam 15 menit. Setelah medium dingin, kemudian Saccharomyces cerevisiae dimasukkan kedalamnya untuk dilakukan proses inokulasi. Proses inokulasi ini dilakukan selama 48 jam (Cheng, dkk, 2007).

2.9 Persiapan Medium Fermentasi

Medium substrat berupa cairan sebanyak 1800 ml yang disterilisasi terlebih dahulu menggunakan *autoclave* pada suhu 121 °C selama 15 menit. Nutrisi medium terdiri dari 0,18 gr/L (NH₄)₂PO₄, 0,18 gr/L MgSO₄.7H₂O, dan KH₂PO₄ 0,18 g/L (Chairul, 2011). Setelah proses persiapan medium fermentasi maka dilanjutkan proses selanjutnya yaitu proses fermentasi.

2.10 Fermentasi Serabut Sawit

hidrolisis Cairan hasil proses dimasukkan kedalam unit fermentor. Substrat untuk fermentasi sebanyak 2 liter yang terdiri dari 1800 ml cairan hasil hidrolisis dan inokulum sebanyak 200 ml. Proses fermentasi dilakukan secara anaerob dengan variasi kecepatan pengadukan didalam fermentor yakni 100, 150, 200, 250 rpm pada pH 4,5. Waktu pengambilan sampel dari unit fermentor selama 12, 24, 48, 72, 96 dan 108 jam dari masing-masing kecepatan.

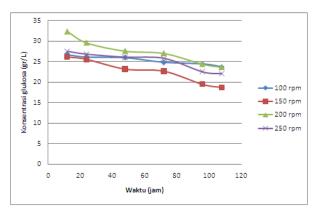
2.10 Pemisahan

Sampel diambil 150 ml dari hasil fermentasi akan dipisahkan bioetanol dengan airnya menggunakan *rotary vacuum evaporator*. Prinsip utama *rotary vacuum evaporator* yaitu terletak pada penurunan tekanan sehingga pelarut dapat menguap pada suhu dibawah titik didihnya yakni 70 °C. Hasil diambil sebanyak 100 ml dan diuji dengan alkoholmeter untuk melihat kadar bioetanol hasil pemisahan (Sutari, 2013).

III. Hasil dan Pembahasan

3.1 Analisa Konsentrasi Gula Awal

Bahan akan dilakukan hidrolisis untuk mengkonversi selulosa menjadi glukosa. Glukosa diukur menggunakan spektrofotometer sinar tampak pada panjang gelombang 545 nm. Hasil glukosa awal dapat dilihat pada Table 3.1 berikut:

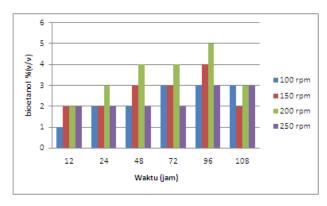

Tabel. 3.1 Hasil Konsentrasi Gula Awal setelah Hidrolisis

Variasi Kecepatan Pengadukan	Konsentrasi gula awal (gr/L)	
100	63,4	
150	74,4	
200	78,1	
250	68,7	
Rata-rata	71,18	

3.2 Pengaruh Waktu Fermentasi terhadap Konsentrasi Glukosa Sisa

Proses fermentasi serabut buah sawit menggunakan *Sacchaomyces cerevisiae* yang dilakukan secara batch dengan variasi kecepatan pengadukan dan waktu fermentasi. Setelah proses fermentasi selesai, dilakukan analisa terhadap konsentrasi gula sisa hasil fermentasi tiap

pengambilan sampel. Tujuan dari analisa ini adalah untuk melihat efektivitas mikroorganisme dalam mendegradasi gula menjadi bioetanol. Hasil analisa konsentrasi gula sisa dapat dilihat pada Gambar 3.1.


Gambar 3.1 Hubungan antara waktu fermentasi terhadap Konsentrasi Gula Sisa Hasil Fermentasi Tiap Variasi

Dari Gambar 3.1 terlihat bahwa lama waktu semakin fermentasi, konsentrasi gula semakin berkurang. Hal ini menunjukkan bahwa, Saccharomyces cerevisiae melakukan aktivitas terhadap glukosa. Penurunan konsentrasi gula terjadi karena Saccharomyces cerevisiae membutuhkan substrat pertumbuhan. baik memperbanyak maupun mempertahankan hidup sel. Gula digunakan oleh Saccharomyces cerevisiae untuk beraktivitas sehingga menghasilkan bioetanol sebagai metabolit primer

Selain itu, gula yang terdapat dalam substrat digunakan sebagai sumber karbon bagi sel ragi untuk mensintesis energi melalui proses fermentasi bioetanol. Waktu fermentasi berpengaruh terhadap aktivitas *yeast* karena semakin lama fermentasi, maka maka jumlah *yeast* akan semakin banyak atau berkembang biak mempunyai semakin aktif sehingga kemampuan untuk memecah semakin besar (Junitania, 2011).

3.3 Pengaruh Kecepatan Pengadukan terhadap Konsentrasi Boetanol.

Penelitian ini mempelajari kecepatan pengadukan optimal dalam menghasilkan bioetanol yang dilakukan dengan beberapa variasi. Hasil pengaruh kecepatan pengadukan dapat dilihat pada Gambar 3.2 berikut.

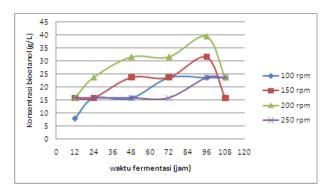
Gambar 3.2 Pengaruh Kecepatan Pengadukan terhadap Waktu Fermentasi

Kecepatan pengadukan menjadi salah satu yang mempengaruhi terbentuknya bioetanol pada saat fermentasi didalam bioreaktor tangki berpengaduk. Pengadukan berfungsi untuk meratakan kontak sel dengan substrat dan mikroorganisme meniaga agar mengendap dibawah (Kurniawan, dkk, pengadukan Fungsi 2011). penyeragaman kontak didalam media cair adalah sebagai pemecah sel berkloni sehingga sel-sel mikroorganisme tidak menyatu membentuk gumpalan-gumpalan (flok). Sebab bila sel yang terdapat didalam media cair membentuk flok maka pengembangbiakan sel akan terganggu akibat sel tersebut tidak mendapatkan makanan yang cukup dari substrat (Ahmad, 2009)

Pada Gambar 3.2 menunjukkan bahwa kadar bioetanol tertinggi dihasilkan pada jam ke-96. Pada kecepatan pengadukan 200 rpm, yaitu sebesar 5%, kemudian pada kecepatan 150 rpm sebesar 4%, serta pada kecepatan 100 dan 150 rpm memiliki kadar bioetanol tertinggi yang sama sebesar 3% dan merupakan kadar bioetanol terendah dari variasi lain. Hal ini

terjadi pada semua variasi penelitian, sehingga dapat disimpulkan bahwa waktu fermentasi optimum dalam penelitian ini adalah 96 jam.

Kecepatan pengadukan 100 rpm belum mampu menghasilkan konsentrasi bioetanol yang tinggi yaitu sebesar 3% (v/v) pada jam ke-96, hal ini dikarenakan, pada kecepatan ini waktu kontak sel dengan substrat masih lambat dalam mengkonversi bioetanol secara optimal (Kurniawan, dkk 2011). Seiring bertambahnya kecepatan pengadukan, mampu menambah konsentrasi bioetanol yang dilihat pada kenaikan kecepatan sebesar 50 rpm yakni 150 rpm dan menghasilkan kadar bioetanol 4 % (v/v) pada jam ke-96.


Konsentrasi bioetanol tertinggi berada pada kecepatan 200 rpm selama 96 jam yakni 5 % (v/v) atau 39,465 (g/L) dan terjadi penurunan kadar etanol pada kecepatan 250 rpm yakni 3 % (v/v). Kecepatan pengadukan tinggi yang kontak mempengaruhi antara Saccharomyces cerevisiae dengan substrat dalam membentuk bioetanol. Pengadukan yang terlalu cepat dapat mengganggu metabolisme *yeast* sehingga produksi bioetanol semakin kecil (Rayana, 2011).

Maka dapat disimpulkan bahwa, kecepatan pengadukan optimum bagi sel *Saccharomyces cerevisiae* berkontak terhadap substrat dalam bioereaktor fermentor untuk mengkonversi bioetanol pada penelitian ini adalah 200 rpm pada jam ke-96.

3.4 Pengaruh Waktu Fermentasi terhadap Konsentrasi Bioetanol

Proses fermentasi menggunakan Saccharomyces cerevisiae untuk menguraikan glukosa menjadi bioetanol dengan variasi kecepatan pengadukan 100, 150, 200, dan 250 rpm. Waktu fermentasi juga divariasikan selama 12, 24, 48, 72, 96, 108 jam untuk melihat perkembangan hasil optimum bioetanol. Kondisi optimum hasil fermentasi diuji kadar alkoholnya

menggunakan alkoholmeter. Hasil Bioetanol dapat dilihat pada Gambar 3.3

Gambar 3.3 Pengaruh Waktu Fermentasi terhadap Konsentrasi Bioetanol

Waktu fermentasi berpengaruh Saccharomyces terhadap aktivitas cerevisiae karena semakin lama waktu fermentasi, maka semakin banyak jumlah yeast dan semakin aktif untuk berkembang biak sehingga mempunyai kemampuan untuk mengkonversi substrat serta hal ini juga berkaitan dalam fasa pertumbuhan mikroorganisme. Peningkatan konsentasi etanol pada kecepatan 100, 150, 200, dan 200 rpm hingga jam ke-96 menunjukkan bahwa Saccharomyces cerevisiae berada pada fase eksponensial. Tetapi, pada pengambilan sampel 108 jam tiap masingmasing variasi kecepatan pengadukan mengalami penurunan yang menandakan bahwa jumlah Saccharomyces cerevisiae semakin menurun dan akan menuju fase stasioner yang menunjukkan bahwa Saccharomyces cerevisiae tidak bekerja optimal. Fase lagi secara tersebut disebabkan karena kadar glukosa yang semakin berkurang dan nutrisi yang ada sebagai makanan sel semakin menurun (Amalia, 2014). Pada fermentasi anaerob, sebagian besar fraksi pada karbon substrat akan di konversi menjadi bioetanol. Maka dari itu, produksi bioetanol yang besar bergantung pada sumber karbonnya (Cheng, dkk, 2007). Penurunan ini disebabkan karena selama pengambilan sampel ada sebagian oksigen yang masuk sehingga membuat proses anaerob yang tidak sempurna dan membuat proses sedikit aerob sehingga memungkinkan tumbuhanya *Acetobacter aceti* yang dapat mengkonversi alkohol menjadi asam asetat yang ditandai dengan bau masam pada sampel sehingga menurunkan konsentrasi bioetanol yang dihasilkan. Berikut reaksi yang terjadi:

$$C_2H_5OH + O_2 \longrightarrow$$
 $CH_3COOH + H_2O$
Bioetanol Oksigen Asam Asetat
Air

Berdasarkan reaksi diatas, terjadi reaksi okidasi bioetanol menjadi asam asetat, apabila etanol telah melewati rentang waktu fermentasinya maka akan terjadi proses fermentasi lanjutan berupa fermentasi asam asetat dimana mula-mula terjadi pemecahan gula sederhana menjadi etanol, selanjutnya etanol menjadi asam asetat (Gunam, 2011)

3.5 Perbandingan antara Hasil Bioetanol dengan Penelitian Lain

Penelitian sebelumnya telah dilakkukan dengan menggunakan bahan yang mirip terhadap karakteristik serabut buah sawit atau bahan-bahan lignoselulosa. Berbagai perlakuan awal dan proses memiliki perbedaan masingmasing agar menghasilkan bioetanol yang optimum.

Tabel. 3.2 Perbandingan hasil Bioetanol dengan Penelitian lain

Penelitian	Cheng (2007)	Ibrahim (2009)	Sangwichien (2013)	Penlitian ini
Bahan baku	TKS (tandan kosong buah sawit)	Tepung Tapioka	TKS (tandan kosong buah sawit)	Serabut buah sawit
Proses	SHF (Separate Hydrolysis Fermentation)	SSF (Simultan Saccharification Fermentation)	SHF (Separate Hydrolysis Fermentation)	SHF (Separate Hydrolysis Fermentation)
Hidrolisis	H ₂ SO ₄	Enzim amilase dan glukoamilase	H_2SO_4	H_2SO_4
Fermentasi	Saccharomyces cerevisiae	Saccharomyces cerevisiae	Saccharomyces cerevisiae dan Saccharomycopsis fibuligera	Saccharomyces cerevisiae
Kecepatan pengadukan	100 rpm	100, 200, dan 300 rpm	150 rpm	variasi (100, 150, 200, dan 250 ppm)
Kadar Bioetanol	15 g/L	0.578 g/L	8,49 g/L	39,465 g/L

Pada Tabel. 3.2 diatas dapat dilihat bahwa perbandingan proses SHF (Separate Hydrolysis Fermentation) dengan penelitian Ibrahim (2009)menggunakan **SSF** (Simultan Saccharification *Fermentation*) menghasilkan kadar bioetanol yang paling sedikit. Hal ini bisa disebabkan karena proses hidrolisis dan fermentasi yang dilakukan secara bersamaan sehingga menyebabkan gula yang dihasilkan lebih sedikit. Gangguan dari inhibitor pada saat hidrolisis dapat mempengaruhi jumlah glukosa yang terbentuk sehingga proses fermentasinya tdak berlangsung optimum kekurangan substrat monosakarida. Sementara proses **SHF** Hydrolysis *Fermentation*) (Separate dibutuhkan waktu terlebih dahulu untuk substrat bahan baku menjalani proses hidrolisis menghasilkan sehingga monomer-monomer **Proses** gula. fermentasi baru akan berjalan pada saat substrat bahan baku ang mengandung komponen polisakarida telah diubah dalam bentuk monomer-monomer gula.

Pada bahan baku tandan kosong kelapa sawit melakukan proses yang sama dengan penelitian ini yakni SHF. Hasil bioetanol yang didapat masing-masing adalah 15 g/L dan 8,49 g/L. Berbeda dengan penelitian ini, kadar bioetanol yang didapat lebih besar dari penelitian sebelumnya yakni 39,465 g/L. Hal ini dpengaruhi pada perlakuan (pretreatment) dalam menghilangkan lignin pada bahan baku masing-masing penelitian. Pengecilan ukuran bahan mempengaruhi dalam penghilangan lignin karena dapat memperbesar luas permukaan serabut. Penelitian ini melakukan dua kali penghilangan lignin yakni delignifikasi menggunakan ektrak abu sawit dan pemurnian menggunakan H₂O₂. Proses penghilangan lignin secara dua kali ini mampu menghasilkan lignin lebih optimal tidak menggangu sehingga proses fermentasi dalam memproduksi bioetanol.

4. KESIMPULAN DAN SARAN

4.1 Kesimpulan

Berdasarkan penelitian yang telah dilaksanakan, maka dapat diambil kesimpulan bahwa bioetanol diproduksi dari bahan baku limbah serabut buah sawit dengan proses Separate *Hydrolysis* Fermentation menggunakan H₂SO₄ dan Saccharomyces cerevisiae. Hasil hidrolisis dalam mengkonversi selulosa menjadi glukosa tertinggi sebesar 78,1 gr/L serta konsentrasi bioetanol tertinggi yaitu 5% (39,465 g/L) pada kecepatan 200 rpm di 96 jam yang menjadi kecepatan optimum Saccharomyces cerevisiae berkontak dengan substrat menghasilkan bioetanol.

4.2 Saran

Perlu adanya penggunaan proses fermentasi lain seperti Sakarifikasi Fermentasi Serentak yang memanfaatkan enzim selulase dan *Saccharomyces cerevisiae* dalam menghasilkan bioetanol dari limbah serabut buah sawit.

Ucapan Terima Kasih

Penulis mengucapkan terima kasih kepada bapak Prof. Dr. Adrianto Ahmad, MT dan ibu Sri Rezeki Muria, ST., MP., MSc selaku pembimbing yang telah mengarahkan dan membimbing penulis selama penelitian ini. Terima kasih kepada kedua orang tua dan keluarga yang telah memberikan dukungan dan motivasi baik berupa materi maupun non-materi selama ini. Terima kasih kepada rekan-rekan Teknik Kimia Angkatan 2010 yang telah banyak membantu penulis dalam penulisan skripsi ini.

DAFTAR PUSTAKA

Ahmad, A., 2009, Teknologi Fermentasi. Jurusan Teknik Kimia ,Universitas Riau.

Amalia, Y., 2014, Pembuatan Bioetanol dari Limbah Padat Sagu menggunakan Enzim Selulase dan Yeast Saccharomyces cerevisiae dengan proses Simultaneous Sacharification and Fermentation (SSF) dengan Variasi Konsentrasi

- Substrat dan Volume Inokulum, skripsi, Universitas Riau, Pekanbaru.
- Chairul, S.Z., Amraini, dan S.R Muria., 2011, Pengembangan Produksi Bioetanol dari Reject Pulp Pabrik Pulp & Paper dengan Proses Sakarifikasi dan Ko-Fermentasi Serentak, laporan akhir Itenas, Universitas Riau, Pekanbaru
- Cheng, CK., Hani Hajar H., and Ismail Ku SK., 2007, Production of Bioethanol from Oil Palm Empty Fruit Bunch, journal, Universiti Malaysia Perlis, Malaysia
- Gunam Ida Bagus W, Ketut Buda, dan I Made Yoga S, 2011, Pengaruh Perlakuan Delignifikasi Dengan Larutan NaOH Dan Konsentrasi Substrat Jerami Padi Terhadap Produksi Enzim Selulase Dari Aspergillus niger Nrrl A-Ii, 264, jurnal, Universitas Udayana, Bali.
- Ibrahim, MFB., 2009, Production of Bioethanol from Tapioca Starch using Saccharomyces cerevisiae: Effect of Temperature and Agitation Speed, thesis, Universiti Malaysia Pahang, Malaysia
- Jati, 2011, Pembuatan Kertas dari Serabut Sawit, http://ments/pembuatan-kertas-dari-serabut-sawit.html, [viewed: 22 Oktober 2012]
- Junitania, 2011, Pembuatan Bioetanol dari Nira Sorgum Manis dengan Proses Fermentasi Menggunakan *Yeast Candida Utilis*, skripsi, Universitas Riau, Pekanbaru
- Kardono, L.B.S., 2010, Teknologi Pembuatan Etanol Berbasis Lignoselulosa Tumbuhan Tropis untuk Produksi Biogasoline, laporan, LIPI, Serpong
- Kurniawan R, S. Juhanda, Rusyad Syamsudin, Moh. Alief Lukman, 2011, Pengaruh Jenis dan Kecepatan Pengaduk pada Fermentasi Etanol Secara Sinambung dalam Bioreaktor

- Tangki Berpengaduk Sel Tertambat, *jurnal*, Itenas Bandung
- Padil, Syelvia Asri, dan Yelmida, 2010, Penentuan Temperatur Terhadap Kemurnian Selulosa–α Batang Sawit Menggunakan Ekstrak Abu TKS. *Jurnal*, Unversitas Riau, Pekanbaru.
- Rayana, M., 2013, Variasi Kecepatan Pengadukan dan Waktu pada Pembuatan Bioetanol dari Pati Sorgum dengan Proses Sakarifikasi dan Fermentasi Serentak (SSF), skripsi, Teknik Kimia, Fakultas Teknik, Universitas Riau, Pekanbaru.
- Sangwichien C and Duangwang S, 2013,

 Fermentation of Oil Palm Empty
 Fruit Bunch Hydrolysate to
 Ethanol by Baker's Yeast and
 Loog-Pang, journal, Prince of
 Songkla University, Thailand
- Siswati, N.D., M. Yatim, dan R. Hidayanto, 2010, Bioetanol dari Limbah Kulit Kopi dengan Proses Fermentasi, Jurusan Teknik Kimia, Fakultas Teknologi Industri, Universitas Pembangunan Nasional "Veteran" Jawa Timur
- Sutari, D., 2013, Prinsip Kerja *Rotary Evaporator*, http:://rotary evaporator.htm,[viewed 10 Mei 2014]