PRODUKSI ENZIM LAKASE OLEH JAMUR Trichoderma asperellum LBKURCC1 DALAM BIOREACTOR TRAY MENGGUNAKAN VARIASI UKURAN SUBSTRAT JERAMI PADI DAN INDUSER CuSO4 PADA FERMENTASI KULTUR PADAT

Gustina¹⁾, Sri Helianty²⁾, Andi Dahliaty³⁾

¹Mahasiswa Jurusan Teknik Kimia S1, ²Dosen Teknik Kimia, ³Dosen FMIPA Kimia Laboratorium Riset Enzim, Fermentasi dan Biomolekuler Program Studi Teknik Kimia S1, Fakultas Teknik Universitas Riau Kampus Bina Widya Jl. HR. Soebrantas Km 12,5 Simpang Baru, Panam, Pekanbaru 28293

E-mail: gustina3577@student.unri.ac.id

ABSTRACT

Laccase is one of the ligninolity enzymes that capable to degrade lignin. This ability can be used for the pretreatment of lignocellulosic materials in the bioethanol production and lignin degradation in pulp. There are diverse sources of laccase producing like fungi, plants and bacteria. In this research, the production of lacase enzyme using Trichoderma asperellum LBKURCC1 with bioreactor tray using solid state fermentation (SSF) method with rice straw substrate. The purpose of this study was to determine the effect of rice straw size and the addition of CuSO4 concentration to the highest production of lacase enzyme by Trichoderma asperellum LBKURCC1. Fermentation is carried out with variation of time 5, 6, 7, 8, 9 and 10 days with fermentation temperature \pm 30°C, substrate size \pm 0.5 cm, 1.5 cm, and 3.0 cm with substrate thickness at tray ie 3 cm acetate buffer solution pH 5,5 and addition of CuSO4 0.5 g/l. Variations for the addition of CuSO4 concentration 0 g/l, 0.50 g/l and 1 g/l with substrate thickness on tray were 3 cm, size of rice straw 0.5 cm and acetate buffer solution pH 5.5. Small size can provide the highest value and the added concentration of CuSO4 given can increase the activity of the resulting lacase enzyme. However, too high CuSO4 concentrations result in decreased lacase enzyme activity. The results showed that the highest lacase enzyme activity was obtained on the size of rice straw ie 0.5 cm and 7 days of fermentation time with an average of 19.27 U/L and the highest lacase enzyme activity was obtained on CuSO₄ 0.50 g/l and fermentation time 7 day with an average of 19.27 U/L.

Keywords: Inducer, Laccase, Rice straw, Solid state fermentation, Trichoderma asperellum.

1. PENDAHULUAN

Kebutuhan Enzim di Indonesia 99% untuk industri masih diimpor dari luar negeri seperti Cina, India, Jepang dan sebagian dari Eropa. Kebutuhan enzim di Indonesia pada tahun 2017 sebesar 2500 ton dengan nilai impor 200 milyar dan nilai ini diperkirakan terus mengalami peningkatan setiap tahunnya. Suatu nilai yang cukup besar untuk mendorong upaya

kemandirian dalam memproduksi enzim nasional [Kemenristekdikti, 2017].

Lakase adalah enzim yang memiliki potensi besar di bidang bioteknologi dan pasar Internasional. Enzim ini diaplikasikan dalam beberapa bidang industri seperti delignifikasi pulp, penyisihan warna limbah, detoksifikasi air limbah, detoksifikasi senyawa xenobiotik dan transformasi antibiotik dan steroid [Octavio

dkk., 2006]. Potensi lakase yang begitu besar mengakibatkan lakase memiliki nilai ekonomis yang tinggi.

Enzim lakase ditemukan pada tanaman tingkat tinggi, serangga, bakteri dan jamur. Salah satu jamur yang dapat menghasilkan enzim lakase adalah jamur Trichoderma asperellum. Trichoderma asperellum merupakan salah satu agen pengendali hayati yang efektif dan dapat menghasilkan enzim lakase dengan menggunakan residu tanaman sebagai substrat [Waluyo, 2004]. Umumnya lakase dalam beberapa literatur diisolasi dari jamur. Jamur Trichoderma asperellum untuk menghasilkan enzim lakase memerlukan media fermentasi yang mampu menyediakan sumber nutrisi yang cukup.

Lignin merupakan salah satu komponen penyusun utama biomassa yang dapat berperan sebagai nutrisi untuk memproduksi lakase. Jerami padi sebagai bahan lignoselulosa, mengandung lignin berkisar 10-25%, hemiselulosa 20-35%. 35-50% dan selulosa [Saha, 20091. Indonesia sebagai negara agraris merupakan penghasil jerami padi yang sangat besar sekitar 80 juta ton per tahun. Selama ini pemanfaatan jerami padi hanya sebagai ternak, dan belum ada pemanfaatan yang lebih ekonomis. Jerami padi telah dilaporkan sebagai media pertumbuhan jamur yang baik [Sulardjo, 2013].

Fermentasi kultur padat merupakan sistem fermentasi mampu yang menghasilkan perolehan produk yang lebih unggul dan lebih mudah dari fermentasi terendam. Pada saat ini, aplikasi fermentasi kultur padat semakin meningkat walaupun secara umum metode fermentasi untuk produksi produk mikroorganisme masih menggunakan fermentasi kultur rendam. Fermentasi padat memilki peralatan yang menarik untuk diaplikasikan khusus untuk memproduksi enzim, protein sel tunggal, dan produksi spora [Durand, 1988]. Untuk melihat parameter berpengaruh perlu dilakukan dengan menggunakan bioreaktor yang memiliki karakteristik tertentu. Degradasi lignin harus memperhatikan secara biologi kondisi kultur yang ekonomis terutama penggunaan mikroorganisme yang effektif dalam memproduksi enzim lignoselulolitik dan ukuran partikel substrat [Wulandari dkk, 2014].

2. METODOLOGI PENELITIAN

2.1 Bahan dan Alat

Bahan-bahan yang digunakan dalam penelitian ini adalah Guaiacol produksi Sigma-Aldrich (No. katalog 90-05-1), kultur jamur lokal *Trichoderma asperellum* yang merupakan koleksi Laboratorium Riset Enzim. Fermentasi dan Biomolekuler FMIPA Universitas Riau. Kultur ini dipelihara pada media Potato Dextroe Agar (PDA) dengan penambahan asam sitrat dalam media. Bahan lignoselulosa sebagai substrat yaitu jerami padi diperoleh dari pertanian padi Kecamatan Bungaraya, Kabupaten Siak, Provinsi Riau. Komposisi untuk medium Kirk termodifikasi menurut Hanung dkk [2013] yang digunakan adalah dextrose, CuSO₄, KH₂PO₄, (NH₄)₂SO₄, MgSO₄, aqua DM, larutan penyangga asetat pH 5,5, dan etanol 70 %.

Sedangkan alat yang digunakan pada penelitian ini adalah Alat-alat yang digunakan dalam penelitian ini adalah unit bioreaktor tray, autoklaf (LDZX-50 FA, China), spektrofotometer UV-Vis Thermo Scientific Genesys 10S, kuvet, pH meter (ATC pH-2011), mikrosentrifugal berpendingin Hitachi CT15RE, cooled incubator Gallenkamp, shaker Daihan Lab Tech LSI-1, waterbath (GRANT SUB28), kertas saring *GF/C* whatman (No. Katalog

1822055), *double hygrometer*, cawan petridis, erlenmeyer, *beaker glass*, *vortex mixer* H-VM-300, *Corning syringe filter* 0,45 µm PES filter media (No. Katalog 6780-2504), tabung mikro, jarum ose dan peralatan laboratorium standar sesuai dengan prosedur.

2.2 Pembuatan Media PDA (*Potato dextrose agar*)

Pembuatan media PDA di awali dengan pemotongan kentang yang sudah dikupas, kentang dimasukkan ke dalam beaker glass yang telah berisi aqua DM sebanyak 25 ml. Campuran dididihkan selama 20 menit dan kemudian disaring menggunakan kain kasa. Filtrat yang diperoleh dicampurkan dengan dextrose dan agar batang, kemudian ditambahkan aqua DM hingga volume 200 mL. Larutan media **PDA** dimasukkan kedalam erlenmeyer (yang telah ditutup dengan kapas dan kasa) untuk disterilisasi pada suhu 121 °C selama 20 menit di dalam autoklaf. Selanjutnya larutan media PDA dimasukkan di kedalam water batch dengan suhu 60°C selama 30 menit. Setelah itu, larutan media PDA ditambahkan asam sitrat sebanyak 1 ml, tujuan penambahan sitrat adalah untuk mencegah asam kontaminasi media **PDA** dari mikroorganisme.

2.3 Peremajaan Isolat Jamur *Trichoderma asperellumm* pada Media PDA

Jamur stok *Trichoderma asperellum* LBKURCC1 diambil dengan menggunakan jarum ose, dilakukan secara aseptis, kemudian ditanam pada medium agar miring dengan cara menggoreskan jarum ose tersebut. Jamur pada media agar miring diinkubasi pada temperatur kamar selama 5 hari atau hingga spora hijau tumbuh lebat.

2.4 Pembuatan Media untuk Produksi Enzim Lakase

Pada produksi enzim, substrat berupa jerami padi dikeringkan dan dicincang terlebih dahulu (ukuran substrat ± 0.5 cm). Setelah itu substrat, tray bioreaktor dan CuSO₄ nutrisi (glukosa, (Induser). (NH₄)₂SO₄, MgSO₄, KH₂PO₄ dan larutan buffer dengan pH 5,5. Media disterilisasi pada suhu 121 °C selama 20 menit. Bioreaktor disterilkan dengan menggunakan alkohol 70 %. Kemudian substrat, tray bioreaktor dan nutrisi yang telah disterilisasi didinginkan pada suhu ruang. Jamur Trichoderma asperellumm LBKURCC1 yang telah diremajakan pada cawan petridis diinokulasi secara aseptis kedalam tray bioreaktor yang didalamnya terdapat substrat dan nutrisi yang telah disterilisasi. Selama produksi proses kelembapan diamati dan suhu menggunakan double hygrometer.

2.5 Ekstraksi Enzim Lakase

Uji aktivitas enzim tiap hari diawali dengan ekstraksi enzim dari kultur jamur. Ekstrak 5 gram sampel dilakukan dengan titik sampling 5 titik dimana setiap titik diambil 1 gram kemudian menambahkan larutan penyangga asetat pH 5,5 sebanyak 50 ml pada recipro shaker dengan kecepatan 150 rpm [Astina, 2016] selama satu jam. Kemudian tabung avendrof yang berisi larutan filtrat dan NaN3 dimasukan dalam tabung sentrifugasi selama 10 menit pada suhu 10 °C dengan kecepatan 9500 rpm [Astina, 2016] dan didinginkan di dalam lemari es pada suhu -20°C. Volume optimum larutan penyangga digunakan untuk percobaan selanjutnya.

2.6 Uji Aktivitas Enzim Lakase

Aktivitas enzim lakase diukur menggunakan spektrofotometer dengan guaiacol sebagai substrat. Penentuan aktivitas lakase Tricodherma asperellum LBKURCC1 dilakukan pada pH 5.5. Untuk menentukan aktivitas enzim siapkan blanko dan campuran enzim. Sebanyak 1 mL enzim lakase ditambahkan 3 mL buffer dan 1 mL guaiacol (2 mM) dan blanko ditambahkan 1 mL agua DM sebagai pengganti filtrat enzim. Campuran didiamkan pada suhu 30°C selama 30 menit. Aktivitas enzim diukur dengan menggunakan spektrofotometer UV/Vis pada panjang gelombang 450 nm [Liu dkk, 20081.

3. HASIL DAN PEMBAHASAN

3.1 Pengaruh Waktu terhadap Produksi Enzim Lakase

Proses fermentasi diawali dengan peremajaan jamur Trichoderma asperellum LBKURCC1 yang dilakukan pada media PDA (potato dextrose agar) selama 5 hari di cawan petridish. Setelah 5 hari spora jamur akan tumbuh [Shuler & Kargi, 2002], T.asperellum spora iamur (Laboratorium LBKURCC1 Biokimia Universitas Riau Culture Collection 1) berwarna setelah tumbuh spora yang lebat maka dilakukan pengektrakan kasar enzim lakase dilakukan pada 6 variasi waktu yaitu pada hari ke-5, hari ke-6, hari ke-7, hari ke-8, hari ke-9 dan hari ke-10.

Pada hari ke 0-5 jamur harus menyesuaikan keadaan seperti suhu, pH serta kelembaban. Selain itu, pada hari ke 0-5 nutrisi masih tersedia didalam media produksi, sehingga jamur memakan nutrisi tersebut untuk dapat tumbuh setelah semua glukosa pada media habis, jamur akan mengkonsumsi lignin pada substrat dan mensintesis enzim lakase. Namun, ketidak ketersediaan adanva glukosa dapat membuat gen-gen pada jamur mengalami inaktivasi dan rusak, sehingga sintesis protein tidak dapat dilakukan. Hal ini sesuai dengan pernyataan Asmed dkk. [2015] bahwa sintesis untuk enzim ekstraseluler baik dari ienis maupun mikroorganisme prokariotik eukariotik akan mengalami represi katabolik.

Pada hari ke-6 dan hari ke-7 aktivitas enzim lakase terus meningkat untuk hal ini menggambarkan bahwa pada hari ke-6 dan ke-7 lignin yang tersedia pada substrat mampu didegradasi oleh jamur dengan baik dan akhirnya dikonversi menjadi enzim lakase. Menurut Astina dkk. [2016] jamur *T.asperellum* LBKURCC1 menghasikan enzim lakase pada pH 5,5 dan hasil produksi enzim lakase yang terbaik dengan puncak tertinggi pada hari ke-7.

Pada hari ke-8 terjadi penuruan aktivitas enzim lakase walaupun tidak signifikan. Pada hari ke-9 dan ke-10 terjadi penuruan aktivitas enzim lakase yang signifikan. Hal ini disebabkan karena represi katabolik yang semakin besar. Selain itu, pada penelitian ini tidak adanya kontrol untuk parameter suhu kelembaban, hal ini membuat suhu menjadi bertambah dan kelembaban semakin berkurang hasil produksi enzim lakase yang didapat rusak. Hal ini sesuai dengan pernyataan Ahmed dkk. [2015] bahwa suhu yang tinggi dapat membuat enzim mengalami denaturasi sehingga aktivitas enzim menjadi menurun.

3.2 Pengaruh Ukuran Jerami Padi terhadap Produksi Enzim Lakase

Ukuran jerami padi memiliki pengaruh dalam proses produksi enzim lakase. Pada penelitian ini, aktivitas lakase yang dihasilkan pada proses fermentasi dengan ukuran jerami padi 0,5 cm, 1,5 cm, dan 3,0 cm menentukan produksi enzim lakase. Pada ukuran jerami padi 0,5 cm memiliki pengaruh dalam proses produksi enzim

lakase, substrat yang berukuran lebih kecil menyediakan luas permukaan kontak antara substrat dan miselia jamur yang lebih luas sehingga jamur dapat dengan mudah memakan sumber lignin pada substrat. Pada penelitian ini hasil yang terbaik pada ukuran jerami padi 0,5 cm. Hal ini menunjukkan bahwa produksi enzim lakase oleh iamur T.asperellum dengan menggunakan fermentasi kultur padat sangat berpengaruh untuk menghasilkan enzim lakase. Menurut Hanung dkk. [2013] telah melakukan penelitian optimalisasi aktivitas enzim lakase oleh jamur pelapuk putih dengan fermentasi kultur terendam terhadap ukuran substrat hasil yang didapat tidak ada perbedaan yang signifikan antara peningkatan ukuran substrat yaitu jerami padi dengan aktivitas enzim lakase yang dihasilkan. Hal ini terjadi, karena interval ukuran jerami padi yang digunakan terlalu dekat yaitu, 0,5 cm, 1 cm dan 1,5 cm [Hanung dkk, 2013].

3.3 Pengaruh Penambahan CuSO₄ terhadap Produksi Enzim Lakase

Aktivitas enzim lakase tertinggi pada variasi CuSO₄ 0 g/L, 0,5 g/L dan 1 g/L yaitu yang terbaik pada 0,5 g/L yaitu 19,27 U/L. Induser ditambahkan pada media dengan tujuan untuk menginduksi agar enzim lakase dapat terbentuk lebih banyak, karena induser erat hubungannya dengan gen yang terdapat didalam DNA jamur LBKURCC1, Trichoderma asperellum pada konsetrasi CuSO₄ 0 g/L, atom Cu⁺² perbandingan menampilkan bahwa aktivitas enzim lakase dengan penambahan CuSO₄ dan tanpa CuSO₄, aktivitas enzim lakase tanpa penambahan CuSO₄ sangat sedikt didapatkan produksi enzim lakase. Jumlah yang sangat kecil jika dibandingkan dengan aktivitas enzim lakase dengan penambahan CuSO₄. Hal ini membuktikan bahwa enzim lakase merupakan enzim induktif, dimana enzim induktif ini jumlahnya didalam sel mikroba tidak tetap, sehingga jika diinduksi dengan induser, jumlahnya dapat bertambah.

Pada konsetrasi CuSO₄ 0,50 g/L, atom Cu⁺² untuk penelitian ini, konsentrasi CuSO₄ terbaik pada hari ke-7. Induser yang ditambahkan pada media dengan tujuan untuk menginduksi agar enzim lakase dapat terbentuk lebih banyak, karena induser erat hubungannya dengan gen yang terdapat didalam **DNA** iamur T.asperellum LBKURCC1 (Laboratorium Biokimia Universitas Riau Culture Collection 1), CuSO₄ dalam hal ini bertindak sebagai katalis enzim lakase untuk menghasilkan senyawa radikal, karena lakase tersusun oleh *multicopper* (*multicopper* oxidase) memiliki kemampuan yang untuk mengoksidasi komponen fenolik dari lignin menggunakan molekul oksigen sehingga mampu mengkatalisis reaksi radikal. Selain itu, lakase memiliki aktivitas phenoloxidase yang dapat mengkatalis melalui oksidasi komponen fenosik radikal vang tidak bebas.

Pada konsetrasi CuSO₄ 1 g/L, atom Cu⁺², atom Cu⁺² berikatan dengan setiap sisi protein represor yang dihasilkan oleh gen Regulator (R) sehingga protein represor menjadi tidak aktif (inaktif). Hal ini mengakibatkan protein represor tidak dapat berikatan dengan gen operator (O) protein represor tidak menghambat transkipsi sehinggga mRNA akan terus berjalan dan proses translasi terus terjadi, hal ini akan membuat sintesis enzim terus berjalan. Protein represor merupakan inhibitor (penghambat) pada produksi enzim yang tersedia tidak hanya mampu berikatan dengan protein represor, tetapi juga mulai mendeaktivasi gen-gen tersebut. Hal inilah yang membuat sintesis enzim pada konsetrasi CuSO₄ 1 g/L sangat menurun. Hal ini sesuai dengan pernyataan Hanung dkk. [2013] bahwa konsentrasi induser yang terlalu tinggi dalam medium fermentasi dapat berdampak negatif karena merupakan racun bagi proses sintesis enzim atau mengalami denaturasi.

4. KESIMPULAN

Berdasarkan hasil penelitian yang dilakukan, maka dapat disimpulkan bahwa ukuran jerami padi dan induser (CuSO₄) memiliki pengaruh dalam proses produksi enzim lakase yang dihasilkan oleh Trichoderma asperellum LBKURCC1. Ukuran jerami padi yang terbaik yaitu 0,5 cm dan konsentrasi CuSO4 terbaik pada 0,50 g/L. Partikel yang terlalu besar membuat menyediakan luas permukaan kontak antara substrat dan miselia jamur yang lebih kecil sehingga jamur tidak dapat dengan mudah memakan sumber lignin pada substrat dan konsentrasi yang terlalu besar membuat aktivitas enzim lakase menurun dan waktu fermentasi berpengaruh terhadap aktivitas enzim dihasilkan, lakase yang untuk jamur Trichoderma asperellum LBKURCC1, waktu produksi terbaik pada hari ke-7 dengan aktivitas enzim 19,270 U/L.

UCAPAN TERIMA KASIH

Penulis menyampaikan terima kasih kepada dosen pembimbing dan lainnya yang bersangkutan yang telah memberikan masukan dan arahan serta bantuan dalam menyelesaikan penelitian ini.

DAFTAR PUSTAKA

Ahmed, S., Shimuda, B., & Siddiqui, H. A. (2015). Screening and Assessment of

- Laccase Producing *Trichoderma* Species Isolated from Different Environmental Samples. *Journal of Biochemical Engineering*, 25, 606–610.
- Astina, D. (2016). Uji Aktivitas Enzim Laccase Produksi *Trichoderma* asperellum LBKURRC1. *Tesis*. Pekanbaru, Lembaga Penelitian Universitas Riau.
- Durand, A., de la Broise, D., & Blachère, H. (1988). Laboratory scale bioreactor for solid state processes. *Journal of Biotechnology*, 8(1), 59–66.
- Hanung, C.D., Osmand, R., & Hendro, R. (2013). Optimisasi Produksi Enzim Lakase pada Fermentasi Kultur Padat Menggunakan Jamur Pelapuk Putih *Marasmius sp.* Pengaruh Ukuran Partikel, Kelembapan, dan Konsentrasi Cu. *Journal of Lignocellulose*, 3 (2), 65-72.
- Kemenristekdikti. (2017). Kemandirian Produk Enzim Indonesia. www.ristekdikti.go.id/kemandirian-produk-enzim-indonesia. Diakses pada tanggal 14 September 2017.
- Liu, J., Ju, M., Wu, W., Liu, B., Zhan, L., Wu, M., ... Tong, S. (2014). Lignocellulolytic Enzyme Production in Solid-State Fermentation of Corn Stalk with Ammoniation Pretreatment by Lentinus edodes L-8. *BioResources*, 9(1), 1430–1444.
- Sulardjo. (2013). *Pemanfaatan Limbah Padi Untuk Industri*. Bahan Ajar
 Prodi Teknologi Hasil Pertanian,
 UNWIDHA Klaten, Magistra No. 84
 Th. XXV ISSN 0215-9511.
- Waluyo. (2004). Mikrobiologi Umum. *1st Ed.* Malang: UMM Press.