Evaluasi Kualitas Pencahayaan Pada Ruang Perkuliahan Gedung C Fakultas Teknik Universitas Riau

Ikhbal Havif JH*, Budhi Anto**

*Teknik Elektro Universitas Riau **Jurusan Teknik Elektro Universitas Riau Kampus Bina widya Km 12,5 Simpang Baru Panam, Pekanbaru 28293 Jurusan Teknik Elektro Universitas Riau

Email: ikbal.havif@yahoo.co.id

ABSTRACT

Light illuminance in the classrooms is one of the important aspects for convenience in learning.. Poor level of illuminance can affect eye health. According to the National Standard of Indonesia SNI 03-6575-2001, the recommended illuminance level for classrooms is 250 lux. In this study measure the illuminance level at 19 classrooms of Building C Faculty of Engineering, University of Riau. From the results of measurements obtained the average illuminance in all classrooms is 123,13 lux,the highest illuminance is 141 lux at room 317 and the lowest illuminance is 103,4 lux at room 314. The average illuminance is not recommended illuminance level. Therefore the evaluation and recalculation of the number of luminaires in 19 classrooms. From the calculation result using the zonal cavity method for rooms 304, 305, 306, 307, 308, 309, 310,311,312,313,314,315, the number of luminaires required is 9 luminaires with 3 rows and 3 columns and for rooms 301, 302,303,316,317,318,319 obtained luminaire requirement of 9 luminaires 3 rows and 3 columns.

Keywords: Standart illuminance in the classroom, luminaire, zonal cavity method

I. PENDAHULUAN

Ruang kelas sebagai tempat kegiatan belajar mahasiswa selayaknya berupa tempat yang nyaman, sehat, sekaligus efisien dalam pemanfaatan energi. Sebagai tempat belajar formal, sudah selayaknya pencahayaan di dalam ruang kelas harus mencukupi kebutuhan kenyamanan dan kesehatan para peserta didik.

Prinsip umum pencahayaan adalah bahwa cahaya yang berlebihan tidak akan menjadi lebih baik. Penglihatan tidak menjadi lebih baik hanya dari jumlah atau kuantitas cahaya tetapi juga dari kualitasnya. Kuantitas dan kualitas pencahayaan yang baik ditentukan dari tingkat refleksi cahaya dan tingkat rasio pencahayaan pada ruangan (Irianto, 2006).

Pemasangan penerangan listrik yang tidak sesuai dengan standar penerangan yang berlaku, akan menimbulkan kerugian bagi mahasiswa maupun dosen. Kerugian yang sering terjadi akibat pemasangan penerangan listrik yang tidak memenuhi standar misalnya mempengaruhi pusat syaraf penglihatan di

otak. Jadi penerangan listrik, selain mempunyai manfaat yang besar untuk memenuhi kebutuhan manusia, juga dapat menimbulkan kerugian, apabila pemasangan tidak sesuai dengan standar yang berlaku.

Ruang kuliah di Jurusan Teknik Universitas Riau adalah ruang dengan aktivitas utama belaiar, baca dan tulis. Menurut Standar Nasional Indonesia SNI 03-6575-2001, kuat penerangan minimum yang diharapkan untuk ruangan kelas adalah 250 lux. Berdasarkan hal tersebut, maka sangat perlu untuk melakukan penelitian tentang kuat pencahayaan di ruang kuliah karena pencahayaan sangat berpengaruh terhadap kesehatan mata mahasiswa dan derajat kelelahan mata serta secara tidak langsung mempengaruhi tingkat konsentrasi mahasiswa terhadap perkuliahan atau proses belajar mengajar.

II. TINJAUAN PUSTAKA

2.1 Pencahayaan

Suatu penerangan diperlukan oleh manusia untuk mengenali suatu obyek secara visual. Pada banyak industri, penerangan mempunyai pengaruh terhadap kualitas produk. Kuat penerangan baik yang tinggi, rendah, maupun menyilaukan berpengaruh terhadap kelelahan matamaupun ketegangan syaraf.Untuk memperoleh kualitas penerangan yang optimal maka ditetapkan standar kuat penerangan yang direkomendasikan.

2.2 Besaran Penerangan

Untuk mempermudah pemahaman dalam teknik penerangan, maka perlu dijelaskan ukuran-ukuran dasar dari teknik penerangan. Dalam teknik pencahayaan terdapat empat hal penting yaitu:

- a. Kuat penerangan (E) dengan satuan lux (lm/m^2) .
- b. Arus Cahaya atau *Luminous flux* (Φ) dengan satuan lumen (lm).
- c. Intensitas Cahaya atau *Luminous Intensity* (I) dengan satuan candela (cd).
- d. Kecermerlangan Cahaya atau Luminansi (L) dengan satuan cd/m.

2.3 Lampu Listrik dan Karakteristiknya

a Lampu Pijar

Lampu pijar tergolong lampu listrik generasi awal yang masih digunakan hingga saat ini. Filamen lampu pijar terbuat dari tungsten (wolfram), bola lampu diisi gas.. Prinsip kerja lampu pijar adalah ketika ada arus listrik mengalir melalui filamen yang resistivitas mempunyai tinggi sehingga menyebabkan kerugian tegangan, selanjutnya menyebabkan kerugian daya yang menyebabkan panas pada filamen sehingga filamen berpijar. Lampu pijar terbagi atas 3 jenis yaitu:

- a. Lampu filamen karbon
- b. Lampu wolfram
- c. Lampu halogen

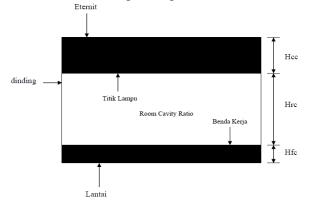
b Lampu Fluoresen

Lampu fluoresen (TL= tubelair lamp) termasuk lampu merkuri rendah (0,4 Pa) yang dilengkapi dengan bahan fluoresen. Cahaya yang dipancarkan dari lampu adalah UV (termasuk sinar tak tampak). Untuk itu bagian dalam tabung lampu dilapisi dengan bahan fluoresen yang berfungsi mengubah UV menjadi sinar tampak. Disamping itu pada bahan fluoresen ditambahkan senyawa lain yang disebut aktivator. Didalam tabung lampu fluoresen terdapat merkuri dan inert.Fungsinya adalah memperpanjang umur elektroda karena keberadaan gas tersebut dapat mengurangi evaporasi, pengendali kecepatan elektron bebas sehingga lebih lintasan memungkinkan terjadinya ionisasi merkuri, dan memudahkan lewatnya arus didalam tabung khususnya pada temperatur rendah.

2.4. Tingkat Pencahayaan Minimum yang Direkomendasikan

Tabel 2.1 Standar kuat penerangan pada ruang perkuliahan

Nama Ruangan	Lux
Ruang Komputer	350
Ruang Gambar	750
Ruang Kelas	250
Perpustakaan	300
Laboratorium	500
Kantin	200


2.5 Metode Zonal Cavity

Dalam memperkirakan banyaknya jumlah lampu yang akan dipasang serta tingkat cahaya yang di perlukan dalam suatu ruangan, sehingga tidak banyak energi listrik yang terbuang, maka diperlukan perencanaan sistem penerangan yang baik. Perhitungan untuk mendapatkan sistem penerangan dalam ruangan yang baik salah satunya adalah

melalui pendekatan dengan menggunakan metode volume ruang (zonal cavity methode).

- Untuk ruangan dibagi 3 zona yaitu:
 - 1. Zona lantai atau hfc (floor cavity)
 - 2. Zona ruang atau hrc (room cavity).
 - 3. Zona langit-langit hcc (ceiling cavity).

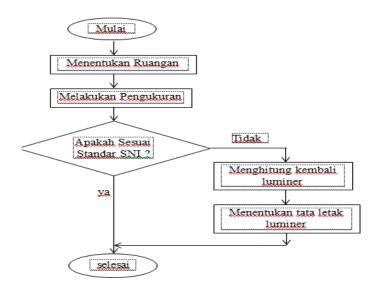
(hcc sama dengan 0 jika lampu tidak digantung).

Gambar 2.1 Konsep Pembagian Volume Ruang

- Prosedur Metode Lumen (zonal cavity) Tentukan cavity ratio dari setiap zona
- 1) Ceilling Cavity Ratio (CCR) $CCR = 2.5 * hcc \left(\frac{\text{Keliling ruang}}{\text{Luas ruang}}\right)$ (1)

2) Room Cavity Ratio (RCR)
$$RCR = 2.5 * hrc \left(\frac{Keliling ruang}{Luas ruang}\right)$$
 (2)

3) Floor Cavity Ratio (FCR)


$$FCR = 2.5 * hfc \left(\frac{Keliling ruang}{Luas ruang}\right)$$
 (3)

- b Tentukan nilai CU(Coefficient of Utilization atau Faktor Utilisasi Ruangan).
- c Tentukan Nilai LLF (Light Loss Factor) Nilai LLF 0.7 nilai tipikal.
- d Hitung jumah luminer

$$N = \frac{E * A}{n * \Phi * CU * LLF} \tag{4}$$

$$SHR = \left(\frac{Jarak\ antar\ luminer}{hrc}\right) \tag{5}$$

III. METODA PENELITIAN

Gambar 3.1 Diagram Alir Penelitian

Pada gambar 3.1 diatas menunjukkan evaluasi kualitas proses perencanaan pencahayaan.. penelitian dimulai Proses dengan penentuan ruangan kelas yang akan di evaluasi.Ruangan kelas yang dievaluasi yaitu 19 ruangan kelas perkuliahan di Gedung C Fakultas Teknik Universitas Riau. Selanjutnya dialkukan pengukuran kuat intesitas pencahyaan,apakah sudah sesuai standar SNI atau tidak. Jika tidak sesuai standar SNI yaitu 250 lux maka selanjutnya dihitung kembali jumlah luminer yang sesuai standar dan menentukan susunan luminer tersebut agar pendistribusian cahayanya dapat merata.

3.1 **Peralatan Penelitian**

Alat yang digunakan pada penelitian ini adalah sebagai berikut:

- 1. Light Meter LX-1002
- 2. Meteran 7,5 m

SHR (Spacing Height Ratio)

3.2 Data

Data yang diperlukan untuk penelitian ini adalah sebagai berikut:

- Ukuran panjang, lebar, dan tinggi ruang kelas perkuliahan di gedung C Fakultas Teknik Universitas Riau.
- 2. Kuat Penerangan di ruang perkuliahan.
- 3. Total jumlah lampu tiap luminer.
- 4. Lumen yang dihasilkan tiap lampu.
- 5. Light loss factor (factor rugi cahaya)
- 6. Faktor pemantulan langit-langit
- 7. Faktor pemantulan dinding.

3.3 Hasil Pengukuran

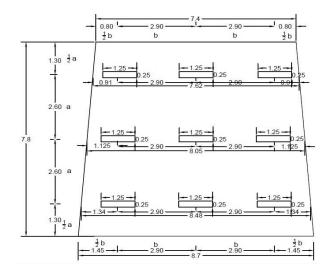
Tabel 3.1 Hasil pengukuran intensitas kuat pencahayaan

D	Titik Pengukuran (LUX)														Rata-		
Ruangan	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	Rata
301	97.4	113	122	88	135	129	78.9	119	124	121	95.8	99.3	99.5	122	124.6	129	112.3
302	90.3	183	175	100	83.5	90	97.5	99.9	136	146	89.3	88.7	99.8	133	162.8	131	119.1
303	105	105	100	65.6	111	150	196	120	108	161	159	103	126	117	119.9	134	123.7
304	138	177	154	127	120	155	166	128	120	166	155	117	149	164	145.8	120	143.8
305	97.9	121	130	101	98.8	134	133	96.7	85.1	132	88.5	105	107	127	140.2	81.2	111.2
306	111	146	133	98.8	99	146	167	101	98.7	156	135	95.8	105	144	167.9	107	125.7
307	133	145	157	138	90	158	182	94.1	95	178	178	110	176	160	101.3	125	138.6
308	89	111	101	98.6	88.9	113	115	96.9	88.9	132	123	100	129	115	122.3	96.5	107.5
309	106	120	144	155	100	147	178	113	95.3	150	142	105	167	132	144.7	105	131.6
310	103	136	129	154	110	177	151	121	99	146	179	108	168	128	132.6	104	134
311	88.9	100	117	133	99.5	135	148	98.3	111	129	151	104	147	106	125.4	101	118.4
312	87.2	164	146	118	77	120	141	96.9	81.2	139	145	110	116	145	138.6	105	120.6
313	123	154	150	96.6	90.1	111	116	91.8	94.5	121	140	96.4	90	92.7	106.8	151	114
314	79.8	113	126	87.9	90	105	121	96.3	90.7	111	129	101	89.4	88.7	104.6	120	103.4
315	100	125	153	109	100	107	134	113	94.3	109	140	113	99.4	140	100.2	120	116
316	92.3	104	78.6	69.4	96.4	155	102	113	169	157	128	115	180	177	165.8	115	126
317	120	128	161	168	121	151	171	120	144	151	119	116	151	176	148.7	120	141.4
318	89.8	149	124	75.6	102	158	140	82.5	111	171	154	111	96	140	99.9	92.9	118.4
319	100	144	171	97.7	104	159	152	101	117	177	164	106	157	174	100.6	105	132.9

IV. HASIL DAN PEMBAHASAN

4.1 Hasil pengukuran Gedung C Fakultas Teknik Universitas Riau

Dari hasil pengukuran yang dilakukan selama beberapa minggu, maka dapat dilakukan analisa bahwa pencahayaan di ruang perkuliahan lantai 3 gedung C fakultas teknik Universitas Riau tidak memenuhi standar SNI 03-6575-2001 yang dimana tingkat pencahayaan minimum yang direkomendasikan yaitu 250 lux. pengukuran kuat intensitas pecahayaan dapat dilihat pada tabel 3.1. Oleh karena itu di hitung kembali jumlah luminer dan tata letaknya agar dapat diperoleh tingkat pencahayaan yang direkomendasikan

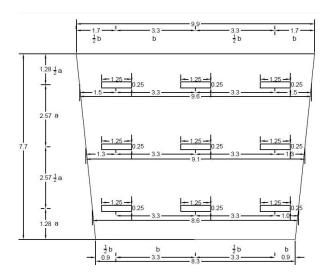

4.2 Ruangan 304, 305, 306, 307, 308,309, 310, 311,312, 313, 314, 315

$$N = \frac{E.A}{n.\Phi.CU.LLF}$$

$$= \frac{250*63.6}{2*2500*0.5488*0.7}$$

$$= \frac{15900}{1920.8}$$

= 8,27 luminer, digenapkan menjadi 9 luminer dan disusun 3 banjar dan 3 kolom.



Gambar 4.1 Letak susunan luminer ruangan 304,305,306,307,308,309,310,311, 312,313,314,315

4.3 Ruangan 301, 302, 303, 316, 317, 318, 319.

$$N = \frac{E.A}{n.\Phi.CU.LLF}$$
$$= \frac{250 * 70,07}{2 * 2500 * 0,5624 * 0,7}$$
$$= \frac{17517,5}{1968,4}$$

= 8,89 luminer, digenapkan menjadi 9 luminer dan disusun 3 banjar dan 3 kolom

Gambar 4.2 Letak susunan luminer ruangan 301,302,303,316,317,318,319

IV. KESIMPULAN

Berdasarkan hasil evaluasi pencahayaan di ruang perkuliahaan Gedung C Fakultas Teknik Universitas Riau dapat diambil beberapa kesimpulan yaitu :

- 1. Pencahayaan di ruang perkuliahan Gedung C Fakultas Teknik Universitas Riau tidak sesuai standar minimum yang yang diperbolehkan di ruang perkuliahan yaitu 250 lux. Kuat pencahayaan tertinggi 143,8 lux di ruang 304 dan terendah 103,4 lux di ruang 314.
- 2. Dari perhitungan kembali jumlah luminer pada ruangan 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315 didapat jumlah luminer yaitu 9 luminer dan pada ruangan 301, 302, 303, 316, 317, 318, 319 didapat jumlah lumner yaitu 9 luminer.

DAFTAR PUSTAKA

Badan Standarisasi 2001 SNI 03-6575-2001 .Tata Cara Perancangan Sistem Pencahayaan Buatan Pada Bangunan Gedung.

Badan Standarisasi 2004 SNI 16-7062-2004 .Pengukuran Intesitas Penerangan di Tempat Kerja. Satwiko, P. 2004. *Fisika Bangunan 2*: Edisis 1. Yogyakarta

Luqman Hakim 2014.Analisa Performa Sistem Pencahayaan Ruang Kelas Mengacu Pada Standar Kegiatan Konservasi Energi.Jurnal Teknik Elektro Dan Computer, Vol.2,No.1, April 2014, 51-58.

Akhmad Rafsanjani, Yayan Harry Yadi., dan Ade Sri Mariawati..*Perancangan* Pencahayaan Buatan Dengan Metode Lumen Di PT.XYZ

Mardi Wasono. 2012. Pengaruh Intesitas Cahaya Ruang Pratikum Dalam Pembacaan Cincin Warna Komponen (Resistor) Berdasarkan Standar K3.ISSN 1410-8178

Farid Khusnul Mujib dan Andi Rahmadiansah. Desain Pencahayaan Lapangan Bulu Tangkis Indoor ITS. Jurnal Teknik POMITS Vol. 1, (2012) 1-8.