Studi Analisis Potensi Penghematan Konsumsi Energi Melalui Audit dan Konservasi Energi Listrik di Rumah Sakit Universitas Riau

Medio Saputra*, Amir Hamzah**

*Teknik Elektro Universitas Riau **Jurusan Teknik Elektro Universitas Riau Kampus Bina widya Km 12,5 Simpang Baru Panam, Pekanbaru 28293

Jurusan Teknik Elektro Universitas Riau

Empili madio samutra@pmail.com

Email: medio.saputra@gmail.com

ABSTRACT

The cost of electrical bill in most of hospital in this big cities indicates getting high. This phenomenal can be anticipated through auditing. By doing this audit will be able to determine the cost factor and the related issue. This paper purposes audit energy to a hospital to evaluate the potential energy saving to reduce wastes of energy for unnecessary things. In this analysis will be obtained the hospital operational cost in the efficient way. The raw data is findout by observation and direct measurement in the respective hospital. The measurement of power quality in the electricity panel main by using the instrumention of power quality analyzer (PQA). The output of this instrumen has managed to figure out the following parameters i.e. output of voltage (V), the current (ampere), power factor (cosphi), active power (W), power reactive (VAR) and power imaginery (VA). Base on the measuremant result, the power quality status the hospital is obtained. In the overall, the following results are describing i.e. energy consumtion intensity (ECI) is 6,1 kWh/m2/month for non ac room and considered as inefficient criteria and 12,89 kWh/m2/month for ac room considered as efficient criteria. The measurement also to include the lighting component to get the intensity of light to compare the condition a standard value. For lighting in health the department of health, the Republic of Indonesia. This is to be increased consideration lighting done in order to meet standards, with the type of Fluorescent Lamp with light LED(Light Emitting Diode)

Keywords: audit energy, quality energy, standards, compare, power quality analyzer (PQA)

I. PENDAHULUAN

Berdasarkan Inpres No. 13 Tahun 2011 Tentang Penghematan Energi dan Air, maka perlu dilakukan manajemen energi agar penggunaan energi terutama energi listrik menjadi lebih efisien. Manajemen energi dilaksanakan melalui beberapa tahapan, langkah awal yang harus dilakukan adalah dengan melaksanakan audit energi. Namun pada kenyataannya proses audit energi masih jarang diterapkan di Indonesia, terutama bagi gedunggedung komersial seperti gedung perkantoran, sekolah, universitas, rumah sakit maupun gedunggedung komersial lainnya. Oleh karena itu dilakukan penelitian audit energi di Rumah Sakit Universitas Riau dengan tujuan untuk mengetahui profil penggunaan energi, untuk mengetahui besarnya nilai Intensitas Konsumsi Energi di Rumah Sakit Universitas Riau serta untuk mengetahui besarnya biaya penghematan yang bisa diperoleh. Program penghematan energi yang dilakukan di gedung pemerintah merupakan bentuk awal dari manajemen energi yang dapat membantu tercapainya penurunan biaya energi di gedung secara keseluruhan. Kesuksesannya dapat menjadi motivasi baik bagi gedung pemerintah lain maupun gedung swasta dalam satu wilayah pemerintahan, ataupun sebagai pendorong munculnya inisiatif serupa di wilayah yang lain. Oleh karena itu, penting untuk dapat menyusun perencanaan program penghematan energi yang terorganisir dan sistematik

II. DASAR TEORI

Audit energi adalah proses evaluasi pemanfaatan energi dan identifikasi peluang penghematan energi serta rekomendasi peningkatan efisiensi pada pengguna energi dan pengguna sumber energi dalam rangka konservasi energi

- 1. Audit Energi Singkat (Walk-Through Energy Audit),
- 2. Audit Energi Awal (Preliminary Energy Audit), dan
- 3. Audit Energi Rinci/Lengkap (Detail Energy Audit).

Konservasi energi adalah pengguanaan energi dengan efisiensi dan rasional tanpa mengurangi penggunaan energi yang memang benar-benar diperlukan. Keputusan untuk melanjutkan audit energi dari tahap sebelumnya ke tahap berikutnya sangat bergantung kepada hasil yang diperoleh pada tahap sebelumnya. Misalnya, hasil dari audit energi singkat mengindikasikan terdapat keborosan dalam penggunaan energi atau dengan kata lain terdapat potensi penghematan energi yang signifikan. Untuk itu perlu dilakukan tahapan audit energi berikutnya, yaitu audit energi awal atau audit energi rinci guna mengkuantifikasi sekaligus mewujudkan potensi tersebut

Tabel 1. Pemba	Tabel 1. Pembagian Langkah-langkah Investasi				
Investasi		Langkag-Langkah yang			
Potensi		dapat dilakukan			
penghematan					
Tanpa Biaya/	1.	Perubahan load gedung			
Biaya		dengan "on-off			
Rendah		scheduling"			
7% - 11%	2.	Meningkatkan performa			
		melalui kalibrasi danre-			
		commissioning peralatan,			
		tune up unit AC, cooling			
		tower dan pompa air			
	3.	Mengganti peralatan agar			
		lebih hemat energi,			
		misalnya seluruh lampu			
		di gedung			
Biaya Sedang	1.	Building Automation			
15% - 25%		Sistem (BAS)			
	2.	Memperbaiki kualitas			
		power (capacitor bank,			
		phase liner,			
		harmonization).			
	3.	Mengganti seluruh			
		peralatan utama agar lebih			
		hemat energi			
Biaya Tinggi	1.	Menggunakan sistem			
25% - 35%		kogenerasi			
	2.	Perhitungan kenyamanan			
		termal overall thermal			
		transfer value (OTTV).			

2.1 Perhitungan konsumsi dan biaya penggunaan energi

Pendekatan yang digunakan untuk mengukur konsumsi, biaya penggunaan dan penghematan energi listrik yaitu pendekatan berdasarkan accounting based analysis. Adapun persamaan yang digunakan untuk menghitung jumlah

konsumsi energi dalam satuan kWh adalah: Konsumsi kWh per hari

$$= \frac{\sum Watt \times Jam penggunaan per hari}{1000}$$

b. biaya penggunaan energi dihitung menggunakan persamaan: Biaya energi listrik = $(kWh \times TDL) \times \sum Hari penggunaan$

Tabel 2. Standar IKE untuk bangunan gedung

No	Jenis Tempat	Nilai Intensitas Konsumsi Energi (IKE)
1	Perkantoran	240 kWh/m ² /thn
2	Pusat Perbelanjaan	$330 \text{ kWh/m}^2/\text{thn}$
3	Hotel dan Apartemen	$300 \text{ kWh/m}^2/\text{thn}$
4	Rumah Sakit	$380 \text{ kWh/m}^2/\text{thn}$

2.2 Efisiensi Pada Sistem Tata Udara Kapasitas \mathbf{AC}

Kebutuhan akan kapasitas dari AC tentunya yang paling menentukan adalah seberapa besar ruangan yang akan di tempatkan AC tersebut. Untuk menghitung kebutuhan AC pada ruangan berikut ini ada cara sederhana untuk menghitungnya:

Rumus : Kebutuhan AC =(Volume Ruangan) x Koefisien dimana, koefisien setiap volume $1 \text{ m}^3 = 500$ BTU/jam.

Tabel 3. Konversi PK ke dalam BTU/jam

No.	PK	BTU/jam
1	1/2	<u>+</u> 5.000
2	3/4	<u>+</u> 7.000
3	1	<u>+</u> 9.000
4	1,5	<u>+</u> 12.000
5	2	<u>+</u> 18.000

Dari tabel 1 terlihat bahwa 1 PK kompresor AC setara dengan 9.000 BTU/jam. Bila hitungan = 6.000 BTU/jam setara dengan 0,6667 PK maka disarankan menggunakan 0.75 PK = 3/4 PK = 7.000BTU/jam, karena bila terjadi penurunan kapasitas AC masih tetap mampu mendinginkan ruangan.

Tabel 4. Pendekatan BTU/hr yang dibutuhkan Pada Ruangan Berdasarkan

No	Luas	Energi
	Ruangan(m ²)	
1	9 -13.5	5.000
2	13,5 -22,5	6.000
3	22,5-27	7.000
4	27 - 31,5	8.000
5	31,5 - 36	9.000
6	36 - 40,5	10.000
7	40,5 -49,5	12.000
8	49,5 - 63	14.000
9	63 - 90	18.000

2.3 Pencahayaan

Pedoman pencahayaan dirumah sakit ini memuat beberapa penjelasan dan theori pencahayaan serta katagori pencahayaan pada ruangan-ruangan dirumah sakit yang disesuaikan dengan bidang kerjanya. Katagori pencahayaan diberikan nilai dengan notasi huruf A,B,C,D,E,F,G,H,I. Masing-masing notasi huruf mempunyai nilai intensitas penerangan 3 (tiga) macam yaitu nilai minimal, yang diharapkan dan maximal.

Tabel 5. Standar Intensitas Pencahayaan di Rumah Sakit berdasarkan Departemen Kesehatan R.I.

Direktorar jenderal pelayanan medik

Kategori	Lux				
Peneranga	Mini	Diharap	Mak		
n	mum	kan	simal		
A	20	30	50		
В	50	75	100		
C	100	150	200		
D	200	300	500		
E	500	700	1000		
F	1.000	1.500	2000		
G	2.000	3.000	5000		
H	5.000	7.500	10.000		
I	10.000	15.000	20.000		

Tabel 6. Standar SNI Intensitas Pencahayaan di Rumah Sakit berdasarkan SNI 6197:2011 Konservasi Energi Sistem pencahayaan

Fungsi Ruangan Tingkat					
	Pencahayaan				
	(Lux)				
Ruang Tunggu	200				
Ruang Rawat Inap	250				
Ruang Operasi/RuangBersalin	300				
Laboratorium	500				
Ruang Rekreasi dan Rehabilitasi	250				
Ruang koridor siang hari	200				
Ruang koridor malam hari	50				
Ruang Kantor staff	350				
Kamar Mandi & Toilet Pasien	200				
Ruang Rapat	300				
Dapur	300				
Ruang Resepsionis dan Kasir	300				
Ruang Tangga Darurat	150				
Ruang Komputer	350				
Ruang Kerja	350				
Ruang Direktur	350				

2.4 Intensitas Konsumsi Energi

Indikator utama penghematan energi di sebuah gedung umumnya menggunakan Intensitas Konsumsi Energi (IKE). IKE menunjukkan besarnya konsumsi energi (kWh) per meter persegi (m2) setiap bulan. Angka IKE (kWh/m2/bulan) diperoleh dengan membagi jumlah kWh penggunaan listrik selama sebulan dengan luas bangunan yang digunakan.

IKE dapat dirumuskan sebagai berikut:

$$IKE = \frac{Total Konsumsi Energi Listrik (kWH)}{Luas Bangunan (m^2)}$$

Dari nilai IKE inilah nantinya ditentukan tingkat efisiensi penggunaan energi listrik berdasarkan standar yang digunakan. Konsumsi energi spesifik per luas lantai menggunakan AC dan atau tidak menggunakan AC adalah sebagai berikut

 a. Jika presentase perbandingan luas lantai yang menggunakan AC terhadap luas lantai total gedung kurang dari 10%, maka gedung tersebut termasuk gedung yang tidak menggunakan AC dan konsumsi energi perluas lantai adalah:

$$IKE1 = \frac{Total\ Komsumsi\ Energi\ l\ (kWH)}{Luas\ Lantai\ Total\ (m2)}$$

b. Jika presentase perbandingan luas lantai yang menggunakan AC terhadap luas lantai total gedung lebih dari 90%, maka gedung tersebut termasuk gedung yang menggunakan AC dan konsumsi energi perluas lantai adalah:

$$IKE2 = \frac{Total \ Komsumsi \ Energi \ (kWH)}{Luas \ Lantai \ Total \ (m2)}$$

- c. Jika presentase perbandingan luas lantai yang menggunakan AC terhadap luas lantai total gedung lebih dari 10% dan kurang dari 90%, maka gedung tersebut termasuk gedung yang menggunakan AC dan tidak menggunakan AC dan konsumsi energi perluas lantai adalah:
 - a. Konsumsi energi per luas lantai tidak menggunakan AC adalah:

$$IKE\ 3 = rac{Total\ Komsumsi\ Energi\ (kWh) - Komsumsi\ Energi\ AC\ (kWh)}{Luas\ Lantai\ Total\ (m2)}$$

b. Komsumsi energi per luas lantai menggunakan AC adalah :

$$IKE\ 4 = \frac{Komsumsi\ Energi\ Ac}{Luas\ Lantai\ Ber\ - AC} +$$

Total Komsumsi Energi — Komsumsi Energi AC *Luas Lantai Total(m2)*

Tabel 7. Kriteria IKE bangunan gedung tidak ber-AC

	uuak	UCI-AC
No	Kriteria	Ruang tanpa-AC
		(kWh/m2/bln)
1	Sangat Efisien	4.17 s/d 7.92
2	Efisien	7.92 s/d 12.08
3	Cukup Efisien	12.08 s/d 14.58
4	Agak Boros	14.58 s/d 19.17
5	Boros	19.17 s/d 23.75
6	Sangat Boros	23.75 s/d 37.75

Tabel 8. Kriteria IKE bangunan gedung ber-AC

_	and the state of t					
	No	Kriteria	Ruang tanpa-AC			
			(kWh/m2/bln)			
	1	Sangat Efisien	0.84 s/d 1.67			
	2	Efisien	1.67 s/d 2.50			
	3	Boros	2.50 s/d 3.34			
	4	Sangat Boros	3.34 s/d 4.17			

2.5 Ketidakseimbangan Beban

Dengan menggunakan persamaan, koefisien a, b, dan c dapat diketahui besarnya, dimana besarnya arus fasa dalam keadaan seimbang (I) sama dengan besarnya arus rata-rata (Irata).

$$\begin{split} I_R &= a. \ I \ maka : \frac{I_R}{I} \\ I_S &= a. \ I \ maka : \frac{I_S}{I} \\ I_T &= a. \ I \ maka : \frac{I_T}{I} \end{split}$$

Dengan demikian, rata-rata ketidakseimbangan beban (dalam %) adalah:

$$\% = \frac{\{|a-1|+|b-1|+|c-1| \ x \ 100\%$$

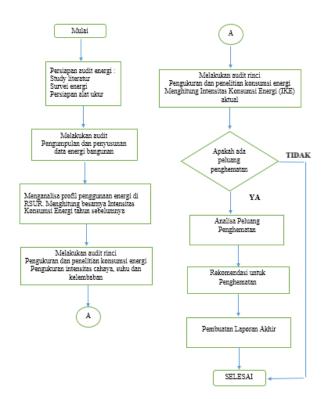
III. METODE PENELITIAN

Gambar 1. Pengukuran Kwalitas listrik pada Panel Utama Rumah Sakit Universitas Riau

Alat yang digunakan: Power Quality Analyzer (PQA) Pada penelitian ini, menggunakan alat ukur Power Quality Analyzer KEW 6310 Ver 2.00 Produk Kyoritsu Electrical instrument works, LTD. Tokyo, Japan. Power Quality Analyzer digunakan sebagai alat ukur distorsi harmonic baik harmonisa arus maupun tegangan.

Gambar 2. Clamp Probe M-8125

Gambar 3. Voltage Test Lead M-7141


3.1 Pengujian Pengukuran Intesitas Pencahayaan

Metode pengukuran dilakukan dengan menentukan obyek pengukuran yaitu obyek meja, sedangkan titik pengukuran ditentukan oleh titik potong garis horizontal panjang dan lebar ruangan pada setiap jarak tertentu setinggi obyek pengukuran dari lantai. Jarak tersebut dibedakan lagi berdasarkan luas ruangan masing-masing.

- 1. Luas ruangan kurang dari 10 m²: titik potong garis horisontal panjang dan lebar ruangan adalah pada jarak setiap 1 (satu) meter.
- 2. Luas ruangan antara 10m² sampai 100m² : titik potong garis horisontal panjang dan lebar ruangan adalah pada jarak setiap 3 (tiga) meter.
- 3. Luas ruangan lebih dari 100m²: titik potong garis horisontal panjang dan lebar ruangan adalah pada jarak setiap 6 (enam) meter.

Gambar 4. Light Meter LX-1002

Gambar 5. Flowchart prosedur pengerjaan Skrips

IV. HASIL DAN PEMBAHASAN

Konsumsi Energi AC = Jumlah pemakain AC (lantai dasar + Lantai 1+ Lantai 2+lantai 3) x 22 hari

= 10943.658 kWh

a. Konsumsi energi per luas lantai tidak menggunakan AC adalah:

Total Komsumsi Energi (kWh) — Komsumsi Energi AC (kWh)

Luas Lantai Total (m²)

IKE =
$$\frac{33473 - 10943.658}{3684,8}$$
 = 6,1 kWh/m²/bulan

b. Komsumsi ener+gi per luas lantai menggunakan AC adalah :

$$IKE4 = \frac{Komsumsi Energi Ac}{Luas Lantai Ber-AC} +$$

Total Komsumsi Energi – Komsumsi Energi AC

Luas Lantai Total(m2)

$$IKE = \frac{10943,658}{1614.91} + \frac{33473 - 10943.658}{3684,8}$$
$$= 12.89 \text{ kWh/m}^2/\text{bulan}$$

Berdasarkan perhitungan terhadap IKE listrik di Rumah Sakit Universitas Riau untuk ruangan tidak menggunakan AC diperoleh nilai IKE perbulan 6,1 kWh/m²/bulan dan untuk ruangan ber-AC diperoleh nilai 12.89 kWh/m²/bulan. Jika dibandingkan nilai benchmark SNI 6390:2011 (tabel 7 & 8), maka IKE aktual gedung Rumah Sakit Universitas Riau untuk ruangan tidak ber-AC dikategorikan sangat boros yaitu sebesar 6,1 kWh/m²/bulan. Sedangkan untuk ruangan ber-AC sebesera 12,89 kWh/m²/bulan dikategorikan cukup efisien. Hal tersebut berarti bahwa masih perlu dilakukan upaya-upaya konservasi energi untuk menurunkan IKE agar tercapai target efisien atau sangat efisien. Untuk itu penggunaan energi pada gedung masih memungkinkan dilakukan melalui pemeliharaan bangunan dan peralatan energi.

4.1 Hasil Pengukuran Pencahayaan

 Kondisi Penerangan dan Standar di RS. Universitas Riau lantai dasar

Tabel 9. Kuat pencahayaan setelah dilakukan pengukuran

No	репдикитип						
.10	Ruangan	Luminasi (Lux) Kategori Hasil Departemen Kesehatan R.I					
		Kategori Pen-	Peng-				
		cahaya-	ukur-	Minimal	Di- harap	Mak- simal	
		211	20		-kau		
1	R.IGD-Trase / R. Tindakan Kebidanan	D	194,75	200	300	500	
2	R.Pendaftaran/ admission	В	89	50	75	100	
3	R.Poli Spesialist	D	250,5	200	300	500	
4	R. Dokter On Call (1)/GF05	D	214	200	300	500	
5	Poli Umum R. Dokter On Call (2)	D	216	200	300	500	
6	R. Tindakan/ Poli Anak	D	110	200	300	500	
7	Poli Spesialist Obgyn/ R. Tindakan	D	105	200	300	500	
8	Resusitzsi/ Farmasi	С	117,4	100	150	200	
9	Pendaftaran Nurse Station	В	91	50	75	100	
10	Ruang Instalasi Rekan Medis /Nurse Resting	С	176	100	150	200	
11	Unit Xray	В	151	100	150	200	
12	Kasir	D	206	200	300	500	
13	Poli Gigi /Preparation (1)	С	118	100	150	200	
14	R.Tindakan /Preparation (2)	С	98,5	100	150	200	
15	Observasi Non Trauma (1) Kamar Bersalin	E	405	500	750	1000	
16	Observasi Non Trauma (2)/ R. Operasi	E	419	500	750	1000	
17	Unit Laboratorium	E	315	500	750	1000	
18	CSSD/R. Dokter	С	97,5	100	150	200	
19	Kamar Jenazah / R. Diskusi Keperawatan	С	118	100	150	200	
20	Pantry/Dapur	С	64,5	100	150	200	
21	R. Persalinan/	E	419	500	750	1000	

2. Kondisi Penerangan dan Standar di Rumah Sakit Universitas Riau lantai 1

Tabel 10. Kuat pencahayaan setelah dilakukan pengukuran

	3: B					
No	Nama Ruangan			minasi (Lux		
		Kategori	Hasil	Departem		
		Pen	Peng	Minimal	Di	Mak
		cahaya	Ukur		harap	simal
		an	an		kan	
1	R. SDM/	D	176	200	300	500
	R. Co Ass (1)					
2	Ruang	C	183,5	100	150	200
	Rapat/Diskusi					
	Keperawatan					
3	R. Dokter (1)	В	70	50	75	100
4	Administration	D	168	200	300	500
	Medical Record/					
	R. Keperawatan					
5	Nurse Station (1)	C	91	100	150	200
6	R.Tindakan	D	108	200	300	500
	Anak/					
	R. Dokter (2)					
7	Nurse Station	C	131	100	150	200
8	R. Perawat	C	46	100	150	200
9	R.VIP Adenium/	D	104	200	300	500
	R. Isolasi 1					
10	Ranap Kls 3	D	198	200	300	500
	Anthurium 1/					
	IRNA Kelas 3 (1)					
11	Ranap Kls 3	D	213	200	300	500
	Anthurium 2/					
	IRNA kelas 3 (2)					
12	Ranap Kls 3	D	150	200	300	500
	Anthurium 3/					
	IRNA Kelas 3 (3)					
13	Ranap NICU/	D	148	200	300	500
	IRNA Kelas 3 (4)					
14	Ranap Anak/	D	138,75	200	300	500
	L1-20		-			

3. Kondisi Penerangan dan Standar di Rumah Sakit Universitas Riau lantai 2

Tabel 11. Kuat pencahayaan setelah dilakukan pengukuran

		peng	ukurun			
			Lur	ninasi (Lux)	
No	Nama Ruangan	Katagori	Hasil	sil Departemen Kesehatan l		
	-	Peng	Peng	Minimal	Dihara	Maksi
		cahayan	ukuran		pkan	mal
1	R.Adm Umum dan	D	148	200	300	500
	Perlengkapan					
	/R. Co Ass					
2	R. Keuangan/	D	223	200	300	500
	R. Diskusi					
	Keperawatan					
4	R. Direktur/	D	154	200	300	500
	R. Dokter					
5	Ruang Staf TU	D	90	200	300	500
7	R. Perawatan	С	157	100	150	200
8	Nurse Station (1)	С	115	100	150	200
9	Dapur	С	170	100	150	200
11	Nurse Station (2)	С	122	100	150	200
12	R.Perawat Wanita	D	109	200	300	500
13	R. Anggrek /	D	170	200	300	500
	R. Isolasi					
14	R. Tulip 1	D	176	200	300	500
15	R. Tulip 2	D	182	200	300	500
16	R. Tulip 3	D	169	200	300	500
17	R. Melati 1	D	225	200	300	500
18	R. Melati 2	D	194,5	200	300	500
19	R. Melati 3/Irna	D	198	200	300	500
	Kelas 2 THT (1)					
20	R. Melati 4/Irna	D	203,5	200	300	500
	Kelas 2 THT (2)					
21	R. Melati 5 + WC/	D	177,5	200	300	500
	Ima Kelas 2 THT					
	(3)					
22	Ìma Kelas 2 THT +	D	163,5	200	300	500
	WC (4)					

4. Kondisi Penerangan dan Standar di RS. Universitas Riaulantai 3

Tabel 12. Kuat pencahayaan setelah dilakukan pengukuran

No	Nama Ruangan		Luminasi (Lux)						
		Kategori	Hasil	Depart	emen Keseh	atan R.I			
		Pencaha	Penguku	Minim	Diharap	Maksi			
		yaan	ran	al	kan	mal			
1	R. Dokter	С	169	100	150	200			
2	R. Server	C	112	100	150	200			
3	R. Bendahara Keuangan/R. Dokter (3)	С	158	100	150	200			
4	R. Dokter /Adm Umum	С	121	100	150	200			
5	R. Komite/ Perpustakaan	D	121	200	300	500			
6	Aula/R.Serbagu na/Pendidikan	D	199,2	200	300	500			

4.2 Kapasitas Pendingin Ruangan (AC)

Berdasarakan kapasitas AC yang terpasang disetiap ruang di rumah sakit Univeristas Riau dan setelah di lakukan perhitungan dan untuk mengetahui pengkondisi udara (AC) harus diperhatikan apakah daya pendingin ruangan sudah sesuai atau tidak. Dengan menggunakan tabel pendekatan (tabel 3) hasil perhitungan daya AC dari beberapa ruangan di Rumah Sakit Universitas Riau dapat dilihat pada tabel sebagai berikut:

Tabel 13. hasil perhitungan kapasitas AC yang disesuaikan dengan (Tabel 4)

Nama Ruangan	Terpasang (PK)	Jumlah BTU	Perhitung (BTU)	Standard
		yang		
		terpasang		
Poli Spesialis	2	18.000	15.383	lebih
IGD	1	9.000	19.019	kurang
Poli Umum	1	9.000	9.323	kurang
Poli Anak	2	18.000	13.868	lebih
Rekam Medik	1	9.000	11.188	kurang
Kasir	0,5	5.000	3.883	lebih
laboratorium	0,5	5.000	8.321	kurang
Farmasi	1	9.000	27.736	kurang
Poli Gigi	1	9.000	30.510	kurang
IGD Taruma/R.Tindakan	2	18.000	30.510	kurang
R.HCU	2	18.000	20.604	kurang
K. Dokter	2	18.000	8.717	lebih
Fisiotherapi	1	9.000	7.925	lebih
Gudang/Yanmed	2	18.000	22.884	kurang
Ruang Rapat	1	9.000	22.884	kurang
Depan SDM	2	18.000	22.884	kurang
Nursestation	2	18.000	13.349	lebih
Ruang tindakan anak	1	9.000	11.442	kurang
Ranap VIP Adenium	0,5	5.000	19.451	kurang
Ranap Kls 3 Antrium 1	1	9.000	22.884	kurang
Ranap Kls 3 Antrium 1	1	9.000	22.884	kurang
Ranap Kls 3 Antrium 2	1	9.000	22.884	kurang
Ranap Kls 3 Antrium 2	1	9.000	22.884	kurang
Ranap Kls 3 Antrium 3	1	9.000	19.451	kurang
Ranap Kls 3 Antrium 3	1	9.000	19.451	kurang
Ranap Anak	1	9.000	19.451	kurang
Ranap Anak	1	9.000	19.451	kurang
Ruang NICU	1	9.000	22.884	kurang
	1	9.000	22.884	kurang

Ruang adm Umum	1	9.000	19.451	kurang
Ruang Keuangan	2	18.000	22.884	kurang
Ruang Staf TU	2	18.000	19.451	kurang
Ruang Direktur	0,5	5.000	9.726	kurang
Kamar Perawat	0,5	5.000	9.726	kurang
Kamar Perawat Pria	1	9.000	19.451	kurang
Aula	14	118.000	189.110	kurang
Ruang Adm Umum Lama	1	9.000	19.451	kurang
Ruang Keuangan Lama	2	18.000	22.884	kurang
Ruang server	0,5	5.000	9.726	kurang
Gudang	1	9.000	9.726	kurang

Tabel 14. Komposisi luas ruangan Gedung Rumah Sakit Universitas Riau

No	Lantai	Room (m²)	Non Room (m²)	Total (m²)	Ber-AC (m²)	Tidak Ber-AC (m²)
1	Lantai	821,44	514,17	1.335,61	622,32	713,29
	Dasar					
2	Lantai 1	552,25	226,8	779,05	418,5	360,55
3	Lantai 2	533	226,8	759,8	108,75	651,05
4	Lantai 3	610,44	199,5	809,94	465.34	344.6
	Jumlah	2.560,59	1.167,27	3.684,4	1.614,91	2.069,49

4.3 Analisis Sistem Tata Cahaya

Berdasarkan hasil pengamatan pada sistem tata cahaya di masing-masing ruangan gedung rumah sakit Universitas Riau menggunakan lampu jenis

- 1. Lampu Tabung Fluoresen (TL) 1x36 W
- 2. Lampu Tabung Fluoresen (TL) 2x36 W
- 3. Tabung Fluoresen (T)L 1x18 W
- 4. PLC 11,13 W dan 2x13 W

Apabila ditinjau dari hasil observasi ditemukan sumber-sumber pencahayaan alami pada gedung, seperti contohnya ditunjukkan pada gambar 1. Berdasarkan hasil observasi, pemanfaatan sumber pencahayaan alami pada gedung rumah sakit Universitas Riau sudah dapat pemaparan langsung sinar terpenuhi karena matahari ke dalam ruangan tidak terkendala disebabkan kaca pada gedung tidak dilengkapi kaca film namun di lengkapi tirai sebagai pelindung dari panas sinar matahari. Penggunaan tirai sangat efektif dan berdampak positif karena dapat mengurangi beban thermal bagi sistem tata udara Dalam pemanfaatannya, radiasi yang ditimbulkan oleh cahaya matahari langsung ke dalam bangunan gedung harus dibuat seminimal mungkin untuk menghindari timbulnya peningkatan temperatur pada ruang dalam bangunan.

Untuk meningkatkan kuat pencahayaan sesuai dengan Departemen Kesehatan R.I dan SNI 6197:2011 yaitu 150-500 lux untuk standar jenis" ruangan pada rumah sakit, maka dapat dilakukan

dengan penggantian lampu jenis TL dengan jenis TL-LED sebagai berikut:

- 1. Mengganti lampu jenis TL 36 watt dengan TL-LED 18 watt
- 2. Mengganti lampu jenis TL 18 dengan jenis TL-LED 9 watt
- 3. Mengganti PLC, 13 watt dengan LED 9 watt di koridor dan lobi
- 4. Mengganti PLC 11 watt dengan LED 7 watt di WC

4.4 Peluang Konservasi Energi Sistem Tata Cahaya

Berdasarkan hasil pengukuran dan observasi terhadap kondisi sistem tata cahaya di rumah sakit Universitas Riau, terdapat peluang dan langkah-langkah yang memungkinkan untuk penghematan energi listrik khususnya pada sistem tata cahaya. Peluang dan langkah-langkah konservasi tersebut antara lain:

1. Pergantian lampu TL 36 watt dengan LED 18 watt di setiap lantai. Penggunaan lampu TL 36 watt di gedung rumah sakit universitas riau sebanyak 307 unit dari total lampu keseluruhan. Berdasarkan hasil pengukuran menggunakan lux meter, kuat pencahayaan di ruangan masih berada di bawah standar SNI 6197:2011. Untuk meningkatkan kuat pencahayaan menjadi 150-350 lux maka dilakukan penggantian lampu jenis TL 36 watt menjadi lampu TL-LED 18 watt. Tiap 2 unit lampu TL 36 watt diganti dengan 2 unit lampu TL-LED 18 watt. dari proses penggantian lampu tersebut didapatkan peluang penghematan energi sebesar 50 persen per tiap penggantian 2 unit lampu TL 36 watt menjadi 2 unit lampu TL-LED 18 watt. Lampu LED dapat menghasilkan lumen yang jauh lebih baik dibandingkan lampu jenis TL 36 watt selain itu sinar lampu yang dihasilkan juga lebih nyaman di mata. Perhitungan potensi penghematan sistem tata cahaya dengan cara mengganti lampu TL 36 watt menjadi LED 18 watt ditunjukkan Tabel

Tabel 15. Peluang konservasi energi sistem tata cahaya melalui pergantian lampu TL 36 watt dengan LED 18 watt

<i>&</i>		
Keterangan	Nilai	Satuan
Jumlah lampu TL 36 watt yang terpasang	307	Unit
Kapasitas daya total 36 watt	11,01	kWh
Lama operasi :		
36 W x 24jam x 8 lampu x22/1000 =	152,0	kWh
36 W x 12jam x 189 lampu x 22/1000 =	1.796,2	kWh
36 W x 10jam x 64 lampu x 22/1000 =	506,8	kWh
36 W x 8jam x 45 lampu x22 hari/1000 =	285,1	kWh
Konsumsi energi total	2740,3	kWh/bulan
Biaya listrik	2.466.288	Rp/bulan
Mengganti lampu TL 36 watt dengan jenis	TL-LED 18	watt
Estimasi penghematan	50%	
Penghematan energi	1370,2	kWh/bulan
Penghematan biaya listrik (bulan)	1.233.144	Rp/bulan
Penghematan biaya listrik (tahun)	14.797.728	Rp/tahun
Harga lampu	1 lampu	Rp300.000
Biaya investasi	92.100.000	Rp

Berdasarkan Tabel pergantian 307 unit lampu TL 36 watt menjadi 307 unit lampu TL-LED membutuhkan investasi sebesar Rp 92,100,000,- dan dapat menghemat biaya energi Rp 14.797.728/tahun.

2. Pergantian lampu TL 18 watt dengan LED 9 watt di setiap lantai. Total lampu TL 18 watt yang terpasang di rumah sakit Universitas Riau adalah 3,336 unit atau sekitar 42 persen dari total lampu Berdasarkan hasil terpasang. pengukuran menggunakan lux meter, kuat pencahayaan di ruang kerja masih berada di bawah standar SNI. Untuk meningkatkan kuat pencahayaan sesuai dengan standar SNI maka dilakukan penggantian lampu jenis TL 18 watt menjadi lampu TL-LED 9 watt. Tiap 2 unit lampu TL 18 watt diretrofit dengan unit lampu TL-LED 9 watt. Akan didapatkan peluang penghematan konsumsi energi sebesar 50 persen per tiap penggantian 2 unit lampu TL 18 watt menjadi 2 unit lampu TL-LED 9 watt. Perhitungan potensi penghematan sistem tata cahaya dengan cara mengganti lampu TL 18 watt menjadi LED 9 watt ditunjukkan Tabel

Tabel 16. Peluang konservasi energi sistem tata cahaya melalui pergantian lampu TL 18 watt dengan LED 9 watt

Keterangan	Nilai	Satuan
Jumlah lampu TL 18 watt yang terpasang	14	Unit
Kapasitas daya total 18 watt	0,252	kWh
Lama operasi :		
18x24jam x 3 1ampux22/1000 =	28,512	kWh
18x12jam x 4 lampux22/1000 =	19,008	kWh
18x10jam x 4 lampux22/1000 =	15,84	kWh
18x8jam x 3 1ampux22/1000 =	9,504	kWh
Konsumsi energi total	72,8	kWh/bulan
Biaya listrik	65.577	Rp/bulan
Mengganti lampu TL 18watt dengan je	9 watt	
Estimasi penghematan	50%	
Penghematan energi	36,4	kWh/bulan
Penghematan biaya listrik (bulan)	32.788	Rp/bulan
Penghematan biaya listrik (tahun)	393.462	Rp/tahun
Harga Lampu	1 Lampu	Rp.210.000
Biaya investasi	3.654.000	Rp

3. Pergantian lampu PLC 13 watt dengan LED 9 watt di setiap lantai. Penggunaan lampu PLC 13 watt di rumah sakit Universitas Riau sebanyak 13 unit.Potensi penghematan melalui pergantian lampujenis PLC 13 watt menjadi LED 9 watt akandidapatkan peluang penghematan konsumsi energisebesar 30 persen..

Tabel 17. Peluang konservasi energi sistem tata cahaya melalui pergantian lampu PLC 13 watt dengan LED 9 watt

dengan LED 9 wan						
Keterangan	Nilai	Satuan				
Jumlah lampu PLC 13 watt yang terpasang	135	Unit				
Kapasitas daya total 13 watt	1,755	kWh				
Lama operasi :						
13x24jam x 103 lampux22/1000 =	706,9	kWh				
13x12jam x 25 lampu x22/1000 =	85,8	kWh				
13x10jam x 7 lampux22/1000 =	20,02	kWh				
Konsumsi energi total	812,8	kWh/bulan				
Biaya listrik	731.530	Rp/bulan				
Mengganti lampu TL 13 watt dengan	Mengganti lampu TL 13 watt dengan jenis TL-LED 9 watt					
Estimasi penghematan	30%					
Penghematan energi	246,5	kWh/bulan				
Penghematan biaya listrik (bulan)	219.459	Rp/bulan				
Penghematan biaya listrik (tahun)	2.633.508	Rp/tahun				
Harga Lampu	1 Lampu	Rp.90.000				
Biaya investasi	12.150.000	Rp				

Berdasarkan Tabel pergantian 135 unit lampu PLC 13 watt menjadi 135 unit lampu LED 9 watt membutuhkan investasi sebesar Rp 12.150.000 dan dapat menghemat biaya energi Rp 2.633.508 tahun.

Tabel 18. Peluang konservasi energi system tata cahaya melalui pergantian lampu PLC 11 watt dengan LED 7 watt

Keterangan	Nilai	Satuan
Jumlah lampu PLC 11 watt yang terpasang	41	Unit
Kapasitas daya total 11 watt	0,451	kWh
Lama operasi		1
11x12jam x 35 lampux22/1000 = 101,64		kWh
11x10jam x 6 lampu x22/1000 = 14.52		kWh
11x10jani x 0 ianipu x22/1000 – 14,52		
Konsumsi energi total	116,2	kWh/bulan
Biaya listrik	104.580	Rp/bulan
Mengganti lampu TL 11 watt dengan je	nis TL-LED	7 watt
Estimasi penghematan	35%	
Penghematan energi	40,67	kWh/bulan
Penghematan biaya listrik (bulan)	36.603	Rp/bulan
Penghematan biaya listrik (tahun)	439.236	Rp/tahun
Harga Lampu	1 lampu	Rp.55.500
Biaya investasi	2.275.500	Rp

Berdasarkan Tabel pergantian 41 unit lampu PLC 11 watt menjadi 41 unit lampu LED 9 watt membutuhkan investasi sebesar Rp 2.275.500 dan dapat menghemat biaya energi Rp 439.236 tahun. Total Modal yang di butuhkan untuk pergantian semua lampu adalah Rp. 110.179.500. dan penghematan energi yang didapat Rp. 21.524.472/tahun, modal investasi aku balik modal pada tahun ke 5. Pergantian jenis TL standar ke TL LED diharapkan bukan saja menghasilkan penurunan pemakain watt tetapi juga memperbaiki intensitas kwalitas pencahayaan agar memenuhi standar pencahayaan ruangan di rumah sakit.

4.6 Analisis Penghematan Energi Sistem Tata Udara

Berdasarkan hasil perhitungan menunjukkan penerapan konservasi energi pada sistem tata udara dikategorikan cukup efisien yang berarti masih bisa dilakukan penghematan untuk mencapai target efisien maupun sangat efisien. Terdapat peluang konservasi energi listrik untuk meningkatkan efisiensi energi dan menghemat biaya energi listrik. Peluang konservasi tersebut dapat diperoleh dengan cara:

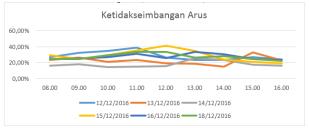
1. Menggeser jam nyala AC selama satu jam. Jam kerja profil penggunaan energi menunjukkan terdapat kelebihan penggunaaan jam pemakaian AC yaitu dinyalakan satu jam sebelum waktu jam kerja yaitu pada pukul 07.00. AC sebaiknya dinyalakan saat jam kerja dimulai pada jam 08.00 walaupun sudah terdapat karyawan yang masuk pada pukul 07.00 WIB, karena nilai penghematan yang dapat diperoleh dengan cara tersebut cukup besar. Potensi penghematan energi dengan cara di atas dapat menghemat

energi listrik sebesar 100 persen. Persentase tersebut diperoleh karena untuk melakukan upaya ini hanya diperlukan perubahan perilaku dan tidak diperlukan biaya investasi. Daya ratarata AC saat jam 07.00-08.00 yaitu sekitar 45,414 kW. Lama operasi selama 1 jam. Jika diasumsikan jam kerja yang berlaku rata-rata setiap bulan adalah 22 hari keria maka konsumsi energi total sebesar 999,1 kWh per bulan. Dengan mengubah jam nyala AC dari jam 07.00 menjadi jam 08.00 akan diperoleh penghematan energi sebesar 999,1 kWh per bulan. Jika diasumsikan harga energi listrik diberlakukan adalah tarif golongan S2 periode Januari-Desember 2016 yaitu Rp 900 per-kWh dapat diperoleh penghematan biaya energi listrik 999,1 kWh/bulan x Rp 900=Rp899.190/bulan. Jadi selama 1 tahun akan diperoleh penghematan biaya energi listrik Rp 10.790280. Nilai penghematan tersebut berarti bahwa rumah sakit Universitas Riau dapat memangkas anggaran untuk energi Rp 10.790.280 setiap tahun sehingga anggaran tersebut dapat dialihkan untuk membiayai keperluan operasional lainnya. Berikut simulasi perhitungan peluang konservasi energi yang bisa diperoleh melalui cara diatas yang disajikan pada Tabel

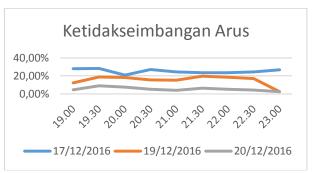
Tabel 19. Peluang konservasi energi sistem tata udara dengan menggeser jam nyala AC 1 jam sebelum jam kerja

Keterangan	Nilai	Satuan					
Daya AC rata-rata saat jam 07.00- 08.00	45,414	kWh					
Lama Operasi	1	jam					
Konsumsi energi Total	999,1	kWh/bulan					
Tarif listrik per-kWh	900	kWh/bulan					
Biaya Listrik	899.190	Rp/bulan					
Menggeser jam nyala AC 1 jam sebelum jam kerja							
Estimasi penghematan	100	%					
Penghematan energi	999,1	kWh/bulan					
Penghematan biaya listrik (bulan)	899.190	Rp/bulan					
Penghematan biaya listrik (tahun)	10.790.280	Rp/tahun					

1. Mematikan AC 30 menit sebelum jam kerja berakhir. Wawancara secara langsung terhadap teknisi dan perawat rumah sakit Universitas Riau penggunaan energi pada AC menunjukkan AC dimatikan pada pukul 16.00 WIB sesuai jam pulang kerja pegawai rumah sakit. Apabila AC dimatikan 30 menit sebelum jam kerja berakhir atau pada pukul 15.30 WIB dapat membatu secara signifikan dalam penghematan penggunaan energi Karena salah satu komponen


terbesar dalam penggunaan energi di rumah sakit adalah AC.

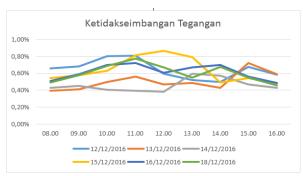
Tabel 20. Peluang konservasi energi sistem tata udara melalui perubahan jam mati AC 30 menit sebelum jam kerja berakhir


Keterangan	Nilai	Satuan			
Daya AC rata-rata saat jam 15.30- 16.00	27,707	kWh			
Lama Operasi	0,5	jam			
Konsumsi energi Total	499,6	kWh/bulan			
Tarif listrik per-kWh	900	kWh/bulan			
Biaya Listrik	449.598	Rp/bulan			
Menggeser jam nyala AC 1 jam sebelum jam kerja					
Estimasi penghematan	100	%			
Penghematan energi	499,6	kWh/bulan			
Penghematan biaya listrik (bulan)	449.640	Rp/bulan			
Penghematan biaya listrik (tahun)	5.395.183	Rp/tahun			

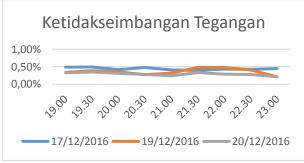
Jika diasumsikan jam kerja yang berlaku ratarata setiap bulan adalah 22 hari kerja maka konsumsi energi total sebesar 999,1 kWh + 499,6 kWh = 1498,7kWh per bulan. Dengan mengubah jam nyala AC dari jam 07.00 menjadi jam 08.00 dan mengubah jam mati AC dari jam 16.00 menjadi jam 15.30.. Harga energi listrik yang diberlakukan adalah tarif golongan S2 periode Januari-Desember 2016 yaitu Rp 900 per-kWh dapat diperoleh penghematan biaya energi listrik 1498,7 kWh/bulan x Rp 900 = Rp 1348830/bulan. Jadi selama 1 tahun akan diperoleh penghematan biaya energi listrik Rp 16.185.960.

4.7 Hasil Pengukuran Besaran Listrik 4.7.1 Arus

Gambar 6. Grafik pengukuran persentase (%) ketidakseimbangan arus pada siang hari (data diolah 2016)



Gambar 7. Grafik pengukuran persentase (%) ketidakseimbangan arus pada malam hari (data diolah 2016)


Tabel 21. Data pengukuran arus untuk tiap fasa (data diolah 2016)

Keterangan	Arus(Ampere)		ere)	Ketidakseimbangan
	I_R	Is	\mathbf{I}_{T}	Arus (%)
Maksimum	91,09	132,9	88,51	41,20%
Minimum	31,37	62,55	51,35	2,41%
Rata-rata	59,45	99,53	67,70	22,13%

4.7.2 Tegangan

Gambar 8. Grafik pengukuran persentase (%) ketidakseimbangan tegangan pada siang hari (data diolah 2016)

Gambar 9. Grafik pengukuran persentase (%) ketidakseimbangan tegangan pada malam hari (data diolah 2016)

Keterangan	Tegangan(Volt)		Ketidakseimbangan	
	V _R	Vs V _T		Tegangan (%)
Maksimum	231,4	228,8	230,2	0,86%
Minimum	218,4	214,2	215,8	0,20%
Rata-rata	224,09	221,00	222,6	0,51%

4.7.3 Drop tegangan

Data pengukuran Tegangan pada ruang panel utama RS. Universitas Riau:

Tabel 22. Drop Tegangang (diolah 2016)

Keterangan	Teganga	n (Volt)	'	%Drop	Гegangan	
	V_R	$\mathbf{V}_{\mathbf{S}}$	$\mathbf{V}_{\mathbf{T}}$	V_R	$\mathbf{V}_{\mathbf{S}}$	\mathbf{V}_{T}
Maksimum	231,4	228,8	230,2	5,18%	4,00%	4,64%
Minimum	218,4	214,2	215,8	-0,73%	-2,64%	-1,91%
Rata-rata	224,09	221,00	222,61	1,93%	0,57%	1,30%

4.7.4 Faktor Daya (CosPhi)

Data pengukuran faktor daya pada ruang panel utama RS. Universitas Riau :

Tabel 23. Faktor Daya (data diolah 2016)

Keterangan	PF_R	PFs	PFT	PF TOTAL
Rata- Rata	0.966	0.980	0.97	0,974
Maksimum	0,982	0,994	0,985	0,984
Minimum	0.953	0,953	0,969	0,959

4.7.5 Daya

Data pengukuran daya aktif pada ruang panel utama di RS. Universitas Riau:

Tabel 24. Daya Aktif (data diolah 2016)

Keterangan	Daya Aktif (W)			
	R	S	T	Total
Maksimum	18.359	25.481	18.741	62.581
Minimum	7.136	14.569	12.916	34.621
Rata- Rata	12.917,2	21.595,6	14.759,5	49.272,44

Data pengukuran daya reaktif (VAR) pada ruang panel utama di RS. Universitas Riau Sebagai berikut:

Tabel 25. Daya Reaktif (data diolah 2016)

Keterangan _	Daya Reaktif (VAR)			
	R	s	T	Total
Maksimum	5.826	6.530	4.604	16.960
Minimum	2.077	2.347	2.209	6.633
Rata- Rata	3.122,2	3.594	2.992,2	9.708,4

Tabel 26. Daya Semu (data diolah 2016)

Keterangan	Daya Semu/Kompleks (VA)			
	R	s	T	Total
Maksimum	19.266	25.719	19.302	64.287
Minimum	7.438	15.016	13.111	35.564
Rata- Rata	13.314,91	21.956,41	15.073,44	50.344,77

V. KESIMPULAN

- Besarnya nilai intensitas komsumsi energi listrik Gedung Rumah Sakit Universitas Riau yang diperoleh, yakni 6,1 kWh/m²/bulan untuk ruangan non AC termasuk dalam kriteria sangat tidak efisien dan 12,89 kWh/m²/bulan untuk ruangan dengan AC termasuk dalam kriteria cukup efisien
- 2. Berdasarkan hasil pengukuran di sisi suplai, diketahui bahwa beban listrik di Gedung Rumah Sakit Universitas Riau berada pada kondisi tidak seimbang. Hal ini terlihat dari berbedanya nilai arus yang mengalir pada masing-masing fasa dan tingginya arus netral.
- 3. Berdasarkan hasil pengukuran terhadap tegangan listrik, diketahui bahwa nilai tegangan listrik pada panel utama rata-rata berada di bawah 1 persen. Kondisi tersebut menunjukkan jika nilai tegangan dalam keadaan baik
- 4. Kuat pencahayaan di ruangan belum seluruhnya sesuai standar SNI 6197-2011 dan Departemen Kesehatan R.I.. Berdasarkan hasil pengukuran berkisar antara 50 hingga 400 lux tergantung jenis ruangan dan fungsinya, dengan dilakukan pergantian jenis lampu TL ke LED diharapkan dapat memenuhi Kuat pencahayaan yang belum memenuhi SNI pencahayaan.
- 5. Langkah-langkah konservasi energi yang dapat diimplementasikan pada sistem tata udara antara lain dengan menggeser jam nyala dan jam mati AC.

5.2 Saran

- 1. Apabila sedang tidak ada di ruangan harap matikan semua peralatan yang menggunakan listrik, agar tidak terjadi pemborosan energi.
- 2. Matikan lampu pada saat siang hari dan perbanyak menggunakan sinar matahari karena kualitas cahaya matahari lebih baik daripada cahaya buatan.

- 3. Untuk menjalankan rekomendasi hasil audit energi perlu komitmen kuat dalam manajemen energi. Oleh karena diharapkan semua pegawai rumah sakit ikut secara aktif berperan dalam memperbaiki sistem manajemen energi yang telah ada dengan rancangan program konservasi energi yang lebih jelas, tertulis dan disosialisaikan serta setiap investasi yang dikeluarkan harus menunjang program konservasi energi.
- 4. Lakukan penanaman pohon untuk menghindari panas matahari di bagian sisi barat gedung Rumah Sakit

Daftar Pustaka

- Galuh Prawestri Citra Handani, Hadi Suyono, ST., MT., Ph.D, Dr. Rini Nur Hasanah, ST.,M.Sc "Rancang Bangun Perangkat Lunak Audit Energi Listrik Gedung". 2012
- Budi Agung Raharjo, Ir. Unggul Wibawa, M. Sc, Hadi Suyono, ST., MT., Ph.D "Studi Analisis Konsumsi dan Penghematan Energi di PT. P.G. Krebet Baru I". 2009
- Subhan Ramadhani , "Analisa Konservasi Energi Pada Industri Tekstil".2008
- Salpanio, Ricky. 2007. "Audit listrik pada gedung kampus Undip Peleburan Semarang". (jurnal). Semarang: Undip
- Wahyu Sujatmiko. 2008. Penyempurnaan Standar Audit Energi Pada Bangunan Gedung.Prosiding PPIS Bandung.
- Bima Brilliando Agam. 2015. Pengaruh Jenis dan Bentuk Lampu Terhadap Intensitas Pencahayaan dan Energi Buangan Melalui Perhitungan Nilai Efikas Luminus. Jember: Universitas Jember
- Puji Slamet.2016. *Kajian Teknis Lampu LED Type Tabung dibandingkan Dengan Lampu*.Surabaya. Universitas 17 Agustus 1945.
- Julius Sentosa Setiadji.2006. Pengaruh

 Ketidakseimbangan Beban Terhadap Arus

 Netral dan Losses Trafo Distribusi pada.

 Jatim. Universitas Kristen Petra
- Albert Thumann, P.E., C.E.M., William J. Younger, C.E.M.Handbook Of Energy Audits. Sevent Edtion. 2008
- USAID.2009.Energy Efficiency in Hospitals Best Practice Guide.India
- USAID.2015.Panduan PraktisPenghematan Energi di Hotel.Jakarta
- ASEAN-USAID. 1992. Building Energy

Conservation Project. ASEAN-Lawrence Barkeley Laboratory.

[BSN] Badan Standarisasi Nasional, 2011.

Prosedur Audit Energi Pada Bangunan Gedung, Konservasi Energi Sistem Tata Udara Pada Bangunan Gedung, dan Konservasi energy Sistem Pencahayaan Bangunan Gedung (SNI 6196:2011; SNI 6390:2011;SNI 6197:2011).Jakarta

[BSN] Badan Standarisasi Nasional. 2004

Pengukuran Intensitas Penerangan di
Tempat Kerja (SNI 16-7062:2004). Jakarta

Direktorat Pengembangan Energi, *Petunjuk Teknis Konservasi Energi Bidang Sistem Pencahayaan*, Departemen Pertambangan dan Energi

Peraturan Menteri Energi dan Sumber Daya Mineral ESDM, Nomor 13 Tahun 2012, *Tentang Penghematan Pemakaian Tenaga Listrik*. Jakarta, 30 Mei 2012

Instruksi Presiden Republik Indonesia, Nomor 13 Tahun 2011, *Tentang Penghematan Air* dan Energi. Jakarta, 11 Agustus 2011

Departemen Kesehatan R.I. 1992. *Pedoman*Pencahayaan di Rumah Sakit. Jakarta

Schneider Electric SPA et al. 2012. *Standard Energy Audit Proc*edure. Green Hospital.