PENAKSIR UNTUK RASIO POPULASI DENGAN MENGGUNAKAN TRANSFORMASI VARIABEL

Putri Rizqiyah^{1*}, Harison², Sigit Sugiarto²

¹Mahasiswa Program Studi S1 Matematika ²Dosen Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau Kampus Binawidya Pekanbaru (28293), Indonesia

*putri.rizqiyah_ur@yahoo.co.id

ABSTRACT

Estimators discussed in this paper are three estimators for population ratio using variable transformation, i.e estimator of population ratio using dual variable, regression-type estimator of population ratio, and ratio-type estimator of population ratio, which is a review from the article of Onyeka et.al [Global Journal of Science Frontier Research13(2013):57-65]. The three estimators are biased estimators. The most efficient estimator is the one that has the smallest mean square error obtained by comparing the mean square error of each estimator. An example is given at the end of the discussion.

Keywords: Estimator of population ratio, variable transformation, biased estimator, mean square error.

ABSTRAK

Penaksir yang dibahas merupakan tiga penaksir untuk rasio populasi dengan menggunakan transformasi variabel yaitu penaksir untuk rasio populasi dengan menggunakan dual variabel tambahan, penaksir tipe-regresi untuk rasio populasi dan penaksir tipe-rasio untuk rasio populasi, yang merupakan review dari artikel Onyeka et.al [Global Journal of Science Frontier Research 13(2013):57-65]. Ketiga penaksir merupakan penaksir bias. Penaksir yang efisien merupakan penaksir yang memiliki means square error (MSE) terkecil yang diperoleh dengan membandingkan MSE dari masing-masing penaksir.Contoh diberikan pada akhir pembahasan.

Kata kunci: Penaksir untuk rasio populasi, tansformasi variabel, penaksir bias, *mean square error*.

1.PENDAHULUAN

Di dalam suatu survey, untuk memperkirakan keadaan populasi biasanya diambil rata-rata dengan menggunakan metode sampling. Adapun metode sampling yang digunakan pada pembahasan ini yaitu metode sampling acak sederhana. Penarikan sampel dengan metode sampling acak sederhana adalah suatu metode untuk mengambil n unit dari populasi berukuran N, dimana setiap unit mempunyai kesempatan yang sama untuk terambil kembali menjadi anggota sampel. Penarikan sampel tanpa pengembalian agar hasil yang diperoleh menjadi akurat. Probabilitas terpilihnya unit n dari N unit populasi sebagai unit sampel pada pengambilan pertama

yaitu n/N, probabilitas pada pengambilan kedua yaitu (n-1)/(N-1)sampai probabilitas pada pengambilan ke-n yaitu 1/(N-(n-1)). Maka probabilitas seluruh n unit-unit tertentu yang terpilih dalam n pengambilan adalah $\binom{N}{n}^{-1}$. Pengambilan sampel dari suatu populasi digunakan untuk menaksir parameter. Ketelitian penaksir yang dibuat tergantung pada metode penaksir yang dihitung dari data sampel.

meningkatkan ketelitian penaksirdigunakan metode rasio. Metoderasio merupakan teknik untuk memperkirakan nilai denganmengambilhubungan antaradua variabel y_i dan x_i dari suatu parameter. Dimana y_i sampel yang berukuran nadalah unit dari populasi berkarakter Yberukuran N dan x_i sampel yang berukuran n adalah unit dari populasi variabel tambahan berkarakter X berukuran N. Penggunaanvariabel tambahandapat meningkatkan ketelitian penaksir. Kemudian dibutuhkan transformasi variabel x_i^* yang berukuran (N-n), dimana x_i^* adalah sampel diluar x_i dalam populasi X yang berhubungan dengan y_i yang akan diteliti untuk setiap sampel. Dengan perbandingan \bar{y} dan \bar{x}^* setara dengan perbandingan \overline{Y} dan \overline{X} . Dengan $\overline{x}^* = (1+\pi)\overline{X} - n\overline{x}$, $\pi = n/(N-n)$.

Bentuk umum dari rasio populasi dinotasikan dengan R, dan dirumuskan sebagai $R = \left(\overline{Y}/\overline{X}\right)$, dengan \overline{Y} dan \overline{X} adalah rata-rata populasi. Sedangkan penaksir untuk rasio populasi dinotasikan dengan \hat{R} adalah $\hat{R} = \left(\overline{y}/\overline{x}\right)$, yang merupakan rasio dari rata-rata sampel dari dua variabel yaitu \overline{y} dan \overline{x} . Sehinggarasio populasi R akan ditaksir oleh penaksir untuk rasio populasi \hat{R} .

Misalkan suatu populasi berukuran N dengan nilai variabel Y_i untuk unit kei, dengan i=1,2,3,...,N maka rata-rata populasi \overline{Y} adalah

$$\overline{Y} = \frac{1}{N} \sum_{i=1}^{N} y_i .$$

Kemudian akan diambil sampel berukuran n unit dengan variabel y_i , dengan i = 1,2,3,...,n, maka rata-rata sampel \bar{y} adalah

$$\overline{y} = \frac{1}{n} \sum_{i=1}^{n} y_i .$$

Untuk menentukan bias dan *MSE* pada sampling acak sederhana digunakanteorema variansi dan kovariansi.

Teorema 1.1[2:h.27] Apabila sampel berukuran n diambil dari populasi berukuran N yang berkarakter Y pada sampling acak sederhana maka variansi rata-rata sampel \bar{y} dinotasikan dengan $V(\bar{y})$ dan dirumuskan sebagai

$$V(\bar{y}) = \frac{(1-f)}{n} S_y^2,$$

dengan f = (n/N) menyatakan fraksi penarikan sampel

$$S_y^2 = \left(\sum_{i=1}^N \left(y_i - \overline{Y}\right) / N - 1\right)$$
 adalah variansi y_i pada populasi berakter Y .

Bukti dari Teorema 1.1 dapat dilihat pada [2: h.27].

Teorema 1.2[2:h.29] Jika y_i, x_i adalah sebuah pasangan yang bervariasi ditetapkan pada unit dalam populasi dan $\overline{y}, \overline{x}$ adalah rata-rata dari sampel acak sederhana berukuran n, maka kovariansi $\overline{y}, \overline{x}$ dinotasikan dengan $Cov(\overline{y}, \overline{x})$ dinotasikan dengan

$$Cov(\bar{y}, \bar{x}) = \frac{1-f}{n} S_{yx},$$

dengan

$$S_{yx} = \frac{\sum_{i=1}^{N} (y_i - \overline{Y})(x_i - \overline{X})}{N - 1}.$$

Bukti dari Teorema 1.2 dapat dilihat pada [2: h.29].

2.BIAS DAN *MSE* PENAKSIR UNTUK RASIO POPULASI

Pada artikel ini membahas tiga penaksir untuk rasio populasi yang diajukan oleh Onyeka dkk [3] yaitu penaksir untuk rasio populasi dengan menggunakan dual variabel tambahan \hat{R}_4 , penaksir tipe-regresi untuk rasio populasi \hat{R}_5 dan penaksir tipe-rasio untuk rasio populasi \hat{R}_6 sebagai berikut

a. Penaksir untuk rasio populasi dengan menggunakan dual variabel tambahan dirumuskan dengan

$$\hat{R}_4 = \frac{\overline{Y}(1+e_0)}{(1+\pi)\overline{X} - \pi(\overline{X}(1+e_1))},\tag{1}$$

dengan $\overline{Y}(1+e_0) = \overline{y}$, $\overline{X}(1+e_1) = \overline{x}$ dan $(1+\pi)\overline{X} - \pi \overline{x} = x^*$, maka persamaan (1) dapat disederhanakan kedalam bentuk

$$\hat{R}_4 = \frac{\overline{y}}{\overline{x}^*}.$$

b. Penaksir tipe-regresi untuk rasio populasi dirumuskan dengan

$$\hat{R}_{5} = \frac{\overline{Y}(1+e_{0})}{\left((1+\pi)\overline{X} - \pi(\overline{X}(1+e_{1}))\right) - B(\overline{X}(1+e_{1}) - \overline{X})},$$
(2)

dengan $B = S_{yx}/S_x^2$ adalah koefisien regresi populasi y atasx,makapersamaan (2) dapat disederhanakan kedalam bentuk

$$\hat{R}_5 = \frac{\overline{y}}{\overline{x}^* - B(\overline{x} - \overline{X})}.$$

c. Penaksir tipe-rasio untuk rasio populasi dirumuskan dengan

$$\hat{R}_6 = \frac{\overline{Y}(1+e_0)\overline{X}(1+e_1)}{((1+\pi)\overline{X} - \pi(\overline{X}(1+e_1)))\overline{X}},$$
(3)

sehingga dari persamanan (3) dapat disederhanakan kedalam bentuk

$$\hat{R}_6 = \frac{\overline{y}\overline{x}}{\overline{x}^* \overline{X}}.$$

Masing-masing penaksir yang dibahas merupakan penaksir bias. Akan ditentukan besarnya bias dan *MSE* dari masing-masing penaksir. Suatu penaksir dikatakan efisien apabila memiliki *MSE* minimum.

Bias dan MSE penaksir untuk rasio populasi dengan menggunakan dual variabel tambahan yaitu

$$B(\hat{R}_{4}) \approx \frac{1}{\overline{X}^{2}} \left(\frac{1-f}{n}\right) \pi^{2} \left(\pi R S_{x}^{2} + S_{yx}\right),$$

$$MSE(\hat{R}_{4}) \approx \frac{1}{\overline{X}^{2}} \frac{1-f}{n} \left[S_{y}^{2} + \pi^{2} R^{2} S_{x}^{2} + 2\pi B R S_{x}^{2}\right].$$
(4)

Bias dan MSE penaksir tipe-regresi untuk rasio populasi yaitu

$$B(\hat{R}_{5}) \approx \frac{1}{\overline{X}^{2}} \left(\frac{1-f}{n} \right) (\pi + B) [(\pi + B)RS_{x}^{2} + S_{yx}],$$

$$MSE(\hat{R}_{5}) \approx \frac{1}{\overline{X}^{2}} \frac{1-f}{n} [S_{y}^{2} + (\pi + B)^{2} R^{2} S_{x}^{2} + 2(\pi + B)BRS_{x}^{2}].$$
 (5)

Bias dan MSE penaksir tipe-rasio untuk rasio populasi yaitu

$$B(\hat{R}_{6}) \approx \frac{1}{\bar{X}^{2}} \left(\frac{1-f}{n} \right) (1+\pi) \left[\pi R S_{x}^{2} + S_{yx} \right],$$

$$MSE(\hat{R}_{6}) \approx \frac{1}{\bar{X}^{2}} \left(\frac{1-f}{n} \right) \left[S_{y}^{2} + (1+\pi)^{2} R^{2} S_{x}^{2} + 2(1+\pi) B R S_{x}^{2} \right].$$
(6)

3. PENAKSIR YANG EFISIEN UNTUK RASIO POPULASI

Untuk menentukan penaksir yang efisien dari penaksir bias, dapat ditentukan dengan cara membandingkan *MSE* dari masing-masing penaksir tersebut dengan menggunakan efisiensi relatif.

- **a.** Perbandingan $MSE(\hat{R}_4)$ dengan $MSE(\hat{R}_5)$ Penaksir untuk rasio populasi dengan dual variabel \hat{R}_4 relatif efisien dibanding penaksir tipe-regresi untuk rasio populasi \hat{R}_5 , jika B>0.
- **b.** Perbandingan $MSE(\hat{R}_4)$ dengan $MSE(\hat{R}_6)$ Penaksir untuk rasio populasi dengan menggunakan dual variabel tambahan \hat{R}_4 relatif efisien dibanding penaksir tipe-rasio untuk rasio populasi \hat{R}_6 , jika $B > -\frac{(1+2\pi)R}{2}$.
- c. Perbandingan $MSE(\hat{R}_5)$ dengan $MSE(\hat{R}_6)$ Penaksir tipe-regresi untuk rasio populasi \hat{R}_5 relatif efisien dibanding penaksir tipe-rasio untuk rasio populasi \hat{R}_6 , jika

$$\frac{\left(1-\pi R\right)-\sqrt{D}}{\left(2+R\right)} < B < \frac{\left(1-\pi R\right)+\sqrt{D}}{\left(2+R\right)}$$
 dengan $D = 1 - 2\pi R + \pi^2 R^2 + 2R + R^2 + 2\pi R^2$.

ContohSebagai contoh,diberikan data tentang pendapatan dan pengeluaran dari karyawan PT. Perkebunan Nusantara V Pekanbaru Tahun 2006. Data yang diperoleh dalam bentuk sampel tetapi pada artikel ini data tersebut dianggap populasi. Sehingga pengamatan ini dilakukan untuk mengetahui pengeluaran karyawan (*Y*) berdasarkan 58 orang karyawan, sebagai informasi tambahan untuk menentukan ratarata pendapatan karyawan tersebut digunakan pendapatan karyawan (*X*).

Tabel 1: Data pengeluaran dan pendapatan karyawan PT. Perkebunan Nusantara V Pekanbaru Tahun 2006.

No	Pengeluaran $(RP) = Y$	Pendapatan $(RP) = X$	No	Pengeluaran $(RP) = Y$	Pendapatan $(RP) = X$
1	800,000	1,000,000	11	1,800,000	1,900,000
2	900,000	1,000,000	12	1,500,000	2,000,000
3	1,500,000	1,800,000	13	1,700,000	2,000,000
4	1,300,000	1,400,000	14	1,800,000	2,100,000
5	1,100,000	1,200,000	15	2,000,000	2,100,000
6	1,100,000	1,300,000	16	2,000,000	2,200,000
7	1,200,000	1,400,000	17	2,000,000	2,200,000
8	1,400,000	1,500,000	18	2,000,000	2,300,000
9	1,300,000	1,600,000	19	2,100,000	2,300,000
10	1,400,000	1,800,000	20	2,300,000	2,400,000

22 23 24	2,300,000 2,500,000 2,700,000	2,500,000 2,600,000	41 42	4,700,000	5,200,000
		2,600,000	42		
24	2,700,000		72	4,800,000	5,300,000
24		2,800,000	43	5,300,000	5,500,000
25	2,400,000	2,800,000	44	5,000,000	5,800,000
26	2,600,000	2,900,000	45	5,400,000	5,600,000
27	2,500,000	3,000,000	46	5,500,000	5,700,000
28	2,800,000	3,200,000	47	5,700,000	5,800,000
29	3,000,000	3,400,000	48	5,600,000	6,100,000
30	3,100,000	3,300,000	49	5,700,000	6,000,000
31	3,000,000	3,400,000	50	6,400,000	6,100,000
32	3,000,000	3,700,000	51	6,900,000	7,100,000
33	3,400,000	3,500,000	52	6,000,000	6,300,000
34	3,300,000	3,500,000	53	5,900,000	6,000,000
35	3,500,000	3,600,000	54	7,100,000	7,700,000
36	3,400,000	3,700,000	55	6,600,000	7,000,000
37	3,400,000	4,200,000	56	7,000,000	7,500,000
38	3,700,000	4,100,000	57	7,500,000	8,000,000
39	4,200,000	4,700,000	58	7,200,000	8,000,000

Sumber [4]

Dari Tabel 1 ditentukan penaksir untuk menaksir rasio dari karyawan dengan menggunakan syarat penaksir lebih efisien yang diperoleh sebelumnya. Hal ini dapat ditunjukkan dengan menghitung *MSE* dari masing-masing penaksir yang diajukan.Informasi yang diperoleh dari data karyawan PT. Perkebunan Nusantara V Pekanbaru Tahun 2006 denganmenggunakan Microsoft Excel dengan nilai-nilai sebagai berikut

<i>N</i> = 58	$S_y = 19,46$	$S_y^2 = 378,74$
n = 5	$S_x = 20,15$	$S_x^2 = 406$
$\overline{Y} = 34,5$	$S_{yx} = 389,75$	R = 0.916
$\bar{X} = 37,66$	B = 0.96	$\pi = 0.09$

Denganmensubstitusikannilai-nilai yang diperoleh kepersamaan (4), (5) dan (6), makadiperoleh MSE darimasing-masing penaksiryang dimuatpada Tabel 2.

Tabel 2:Nilai MSE untuk ketiga penaksir.

Penaksir	MSE
$\hat{R}_{\scriptscriptstyle 4}$	0,129
\hat{R}_{5}	0,435
\hat{R}_{6}	0,452

Dari Tabel 2 diperoleh bahwa

(i)
$$MSE(\hat{R}_4) < MSE(\hat{R}_5)$$

(ii) $MSE(\hat{R}_4) < MSE(\hat{R}_6)$

(ii)
$$MSE(\hat{R}_4) < MSE(\hat{R}_6)$$

(iii)
$$MSE(\hat{R}_5) < MSE(\hat{R}_6)$$

Dengan menggunakan informasi dari data pada Tabel 1 dan Tabel 2, dapat diketahui bahwa penaksir \hat{R}_4 relatif efisien dari pada penaksir \hat{R}_5 dan penaksir \hat{R}_6 .

4. KESIMPULAN

Ketiga penaksir untuk rasio populasi dengan menggunakan transformasi variabel merupakan penaksir bias. Setelah diperoleh nilai MSE dari masing-masing penaksir untuk rasio populasi dengan menggunakan transformasi variabel, kemudian membandingkan MSE dari masing-masing penaksir. Diperolehlah bahwa MSE minimum dari penaksir untuk rasio dengan menggunakan dual variabel tambahan merupakan MSE terkecil. Sehingga dapat disimpulkan bahwa penaksir untuk rasio populasi dengan menggunakan dual variabel tambahan \hat{R}_4 relatif efisien dari penaksir tipe-regresi untuk rasio populasi \hat{R}_5 dan penaksir tipe-rasio untuk rasio populasi \hat{R}_6 jika syarat relatif efisien terpenuhi.

DAFTAR PUSTAKA

- [1] Bain. L. J, & M. Engelhardt. 1991. Introduction to Probability and Mathematical Statistics, Second Edition. Duxbury Press, California.
- [2] Cochran, W. G. 1991. Teknik Penarikan Sampel, Edisi Ketiga. Terj. Dari Sampling Techniques, oleh Rudiansyah & E.R Osman. Penerbit Universitas Indonesia, Jakarta.
- Onyeka, A.C., Nlebedim, V.U. & Izunobi, C.H. 2013. Estimation of [3] Population Ratio in Simple Random Sampling using Variable Transformation. Global Journal of Science Frontier Research, 13: 57-65.
- [4] Sinaga, C.V.D.N. 2007. Pola Konsumsi Karyawan PT. Perkebunan Nusantara V (PTPN V) Pekanbaru. Skripsi Fakultas Ekonomi Universitas Riau, Pekanbaru.
- [5] Sukhatme, P. V. 1957. Sampling Theory of Surveys with Applications. The Indian Council of Agricultural Research, New Delhi.