APLIKASI BEBERAPA DOSIS PUPUK FOSFOR UNTUK PERTUMBUHAN DAN PRODUKSI BEBERAPA VARIETAS SORGUM (Sorghum bicolor (l.) Moench)

APPLICATION OF MULTIPLE DOSES OF PHOSPHORUS FERTILIZER TO GROWTH AND YIELD OF SOME VARIETIES OF SORGHUM

(Sorghum bicolor (L.) Moench)

Leonalarisa Sitepu¹, Elza Zuhry², Nurbaiti²
Departement of Agroteknologi, Faculty of Agriculture, University of Riau
Leoneshitepu8@gmail.com/085213956545

ABSTRACT

The objective of this study was to know the growth and yield of some varieties of sorghum which were given several dose phosphorus fertilizer. This research has been conducted in Field Experiment and the plant breeding laboratory, Faculty of Agriculture, University of Riau, from April 2014 to October 2014. The study,s arranged experimentally Randomized Block Design with two factors namely varieties of sorghum and phosphorus fertilizer with three block. First factor are Kawali, Numbu, Pahat dan Mandau. Second factor are SP-36 45 kg/ha, SP-36 90 kg/ha dan SP-36 135 kg/ha. Parameters observed were plant height, trunk base diameter, the number of leaves, number of segments per plant, flowering age, age of harvest, panicle lenght, weight seeds per panicle, weight 1000 seeds and yield per m². Data were analyzed statistically using ANOVA and followed by Duncan's New Multiple Range Test at level of 5%. The results showed that the provision of phosphorus fertilizer was significantly on various varieties who researched. The provision dose phosphorus fertilizer 90 kg/ha and 135 kg/ha significantly increase higher plants on varieties of Numbu. The different dose of phosphorus fertilizer 45 kg/ha and 90 kg/ha significantly increase the number of segments on varieties of Kawali and Numbu. The provision dose phosphorus fertilizer 45 kg/ha - 135 kg/ha significantly speed up the age of harvest on varieties of Pahat and Numbu. The provision dose phosphorus fertilizer 90 kg/ha has given highest yield/m² on varieties of Pahat (8.5 ton/ha) and Mandau (8.7 ton/ha). The provision dose of phosphorus fertilizer 135 kg/ha given highest yield/m² on varieties of Kawali (9,0 ton/ha). The increase dose phosphorus fertilizer 45 kg/ha – 90 kg/ha given highest yield on varieties of Pahat and Mandau, while increase dose phosphorus fertilizer until 135 kg/ha given hig hest yield on varieties of Kawali and Numbu.

Keywords: Sorghum bicolor (l.) Moench, phosphorus fertilizer, yield component.

PENDAHULUAN

Jumlah penduduk Indonesia yang terus meningkat menjadi permasalahan tersendiri dalam mencukupi kebutuhan akan bahan pangan, sehingga perlu dilakukan upaya peningkatan produksi tanaman pangan untuk memenuhi kebutuhan pangan tersebut. Peningkatan produksi pangan tidak hanya tergantung pada tanaman padi sebagai sumber pangan utama, tetapi dapat juga dilakukan penganekaragaman pangan, diantaranya dengan mengembangkan

tanaman pangan alternatif seperti sorgum (Sorghum bicolor (L). Moench).

Budidaya sorgum masih belum intensif dilakukan oleh masyarakat Indonesia, hal ini terkait dengan permasalahan produktivitas tanaman sorgum yang masih rendah yaitu kisaran 2,0-3,5 ton per hektar, sementara potensinya dapat mencapai 4,0 ton per hektar (Sumantri, Hanyokrowati, dan 1996). Berkaitan Guritno. dengan pemenuhan kebutuhan pangan penganekaragaman pangan, maka perlu dilakukan teknik budidaya yang dapat mendukung hasil produksi tanaman sorgum sebagai bahan pangan alternatif.

Sorgum memiliki potensi besar untuk dapat dibudidayakan dikembangkan secara komersial, karena memiliki sorgum daya adaptasi agroekologi yang luas, produktifitas tinggi, tidak memerlukan input yang besar, lebih toleran pada lahan marginal (kekeringan, salinitas dan lahan masam), serta lebih tahan terhadap hama dan penyakit tanaman dibanding tanaman lain (Sirappa, 2003).

Pada tahun 2011 telah dilakukan penelitian mengenai daya adaptasi beberapa varietas sorgum koleksi **Fakultas** BATAN di Pertanian Universitas Riau. Berdasarkan hasil penelitian tersebut didapatkan bahwa berdasarkan daya adaptasinya sorgum sangat baik dikembangkan di Riau, tetapi perlu dilakukan penelitian lebih lanjut untuk meningkatkan produktivitasnya. Pengembangan teknologi budidaya tanaman sorgum yang dapat diterapkan antara lain dengan pemberian pemupukan yang tepat sehingga produktivitas sorgum dapat ditingkatkan. Salah satunya yaitu dengan memberikan pupuk fosfor.

Fosfor merupakan unsur hara makro utama bagi tanaman yang sering kurang tersedia bagi tanaman karena adanya fiksasi oleh penjerap P di dalam tanah seperti Al³⁺, Fe²⁺, dan Mn²⁺. Sebagai salah satu unsur hara makro utama bagi tanah, fosfor berperan penting pada proses metabolisme karbohidrat dan proses transfer energi dalam tubuh tanaman (Handayani dan Ernita, 2008).

Soepardi (1983) mengemukakan peranan P antara lain penting untuk pertumbuhan sel, pembentukan akar halus dan rambut akar, memperkuat jerami agar tanaman tidak mudah rebah, memperbaiki kualitas tanaman, serta memperkuat daya tahan terhadap penyakit. Leiwakabessy dan Sutandi (2004) mengatakan, produksi buah yang dihasilkan juga dipengaruhi fosfor ketersediaan unsur dalam tanaman. Berdasarkan uraian yang telah peneliti telah dijelaskan maka melakukan penelitian dengan judul "Aplikasi Beberapa Dosis Pupuk fosfor untuk Pertumbuhan dan Produksi Beberapa Varietas Sorgum (Sorghum bicolor (L). Moench.)

Penelitian ini bertujuan untuk melihat pengaruh aplikasi beberapa dosis pupuk fosfor untuk pertumbuhan dan produksi beberapa varietas sorgum (*Sorghum bicolor* (L.) Moench.) dan melihat dosis pupuk terbaik untuk beberapa varietas yang diteliti.

BAHAN DAN METODE

Penelitian ini telah dilaksanakan di Kebun Percobaan dan Laboratorium Pemuliaan Tanaman Fakultas Pertanian Universitas Riau Jl. Bina Widya Km 12,5 Kelurahan Simpang Baru Kecamatan Tampan Pekanbaru, Riau. Penelitian dilaksanakan selama enam bulan, dimulai pada bulan April 2014 sampai September 2014.

Bahan yang digunakan dalam penelitian ini adalah 4 varietas sorgum vaitu Kawali, Numbu, Pahat, dan Mandau koleksi Badan Tenaga Atom Nasional (BATAN). Deskripsi tanaman sorgum dapat dilihat pada Lampiran 3. Pupuk yang digunakan adalah Urea, SP36, KCl dan pupuk kandang (kotoran ayam). Pestisida yang digunakan adalah Decis 2,5 EC dan Furadan 3G. Untuk mengendalikan jamur digunakan Fungisida Dithane M-45. Alat-alat yang digunakan adalah mini traktor, hand traktor, cangkul, meteran, tugal, parang, kantong jaring, oven listrik, timbangan digital, gembor, selang, tali rafia, amplop padi dan alat tulis.

Penelitian dilakukan secara eksperimen dengan menggunakan Rancangan Acak Kelompok (RAK) faktorial yang terdiri dari 2 faktor dan 3 ulangan. Faktor I adalah varietas (V) sorgum yang terdiri dari 4 varietas yaitu: V1 = Kawali, V2 = Numbu, V3 = Pahat, V4 = Mandau.

. Parameter yang diamati adalah diameter tanaman, pangkal tinggi batang, jumlah daun, jumlah ruas pertanaman, umur berbunga, umur panen, panjang malai, berat biji per malai, berta 1000 biji dan hasil per m². Data hasil pengamatan selama penelitian dianalisis secara statistik dengan Ragam, menggunakan Analisis kemudian lanjutkan dengan di Berganda menggunakan uji Jarak Duncan pada taraf 5%.

HASIL DAN PEMBAHASAN Tinggi Tanaman

Hasil analisis ragam memperlihatkan bahwa pemberian pupuk fosfor dan interaksi pupuk fosfor dan varietas berpengaruh tidak nyata terhadap tinggi tanaman, tetapi varietas berpengaruh nyata (Lampiran 4.1). Ratarata tinggi tanaman setelah dilakukan uji lanjut dengan uji jarak berganda Duncan pada taraf 5% dapat dilihat pada Tabel 1.

Tabel 1. Rata-rata tinggi tanaman (cm) beberapa varietas sorgum yang diberi pupuk fosfor

Dosis pupuk fosfor	Varietas Sorgum				
Dosis pupuk tostoi	Kawali	Numbu	Pahat	Mandau	
45 kg/ha	149,67 ^{b A}	226,00 ^{a A}	150,47 ^{b A}	151,47 ^{b A}	
90 kg/ha	153,93 ^{b A}	228,87 ^{a A}	156,80 ^{b A}	152,20 ^{b A}	
135 kg/ha	165,53 ^{b A}	244,80 ^{a A}	132,80 ^{c A}	178,93 ^{b A}	

Angka yang diikuti huruf besar pada kolom yang sama dan huruf kecil yang sama pada baris yang sama adalah berbeda tidak nyata pada uji jarak berganda Duncan taraf 5%.

Faktor II adalah dosis pupuk Fosfor (S) terdiri dari 3 taraf yaitu: S1 = 45 kg/ha SP36 (23,62 g/plot), S2 = 90 kg/ha SP36 (47,25 g/plot), S3 = 135 kg/ha SP36 (70,87 g/plot), sehingga diperoleh 12 kombinasi perlakuan dengan 3 ulangan sehingga terdapat 36 satuan percobaan. Hasil pengamatan tinggi tanaman pada Tabel 1. memperlihatkan bahwa peningkatan dosis pupuk fosfor tidak meningkatkan tinggi tanaman sorgum secara nyata pada semua varietas sorgum yang diteliti, sedangkan pemberian dosis fosfor sebanyak 45 kg/ha, 90 kg/ha dan 135 kg/ha dapat dilihat bahwa varietas

Numbu nyata lebih tinggi tanamannya dibandingkan varietas Kawali, Pahat dan Mandau. Hal ini disebabkan oleh faktor genetik tanaman sorgum. Berdasarkan deskripsi varietas sorgum (Lampiran 4.) dapat diketahui bahwa varietas numbu memiliki tinggi tanaman yang paling tinggi dibanding varietas Kawali, Pahat dan Mandau.

Hal ini memberikan indikasi bahwa tinggi tanaman tidak dipengaruhi oleh pemberian pupuk fosfor. Tinggi tanaman sangat dipengaruhi oleh faktor genetik tanaman. Namun, beberapa hasil penelitian menujukkan bahwa tinggi tanaman sangat peka terhadap pengaruh faktor lingkungan, seperti lokasi dan iklim (Roesmarkam et al., 1985).

Diameter Pangkal Batang

Hasil analisis ragam menunjukkan bahwa pemberian pupuk fosfor, varietas serta interaksi antara pupuk fosfor dan varietas berpengaruh tidak nyata terhadap diameter pangkal batang beberapa varietas sorgum.

(Lampiran 4.2). Rata-rata diameter pangkal batang setelah dilakukan uji lanjut dengan uji jarak berganda Duncan pada taraf 5% dapat dilihat Tabel 2.

Hasil pengamatan diameter pangkal batang pada Tabel memperlihatkan bahwa pemberian berbagai dosis pupuk fosfor tidak meningkatkan diameter pangkal batang tidak memperlihatkan dan juga perbedaan diameter batang secara nyata pada semua varietas yang diteliti. unsur fosfor Menurut Aleel (2008), dibutuhkan oleh untuk tanaman fosfor pembentukan sel. Unsur dibutuhkan oleh tanaman untuk pembentukan sel pada jaringan akar dan memperkuat batang, sehingga tidak mudah rebah. Terry dan Ulrich (1993) juga me nyatakan bahwa P berfungsi dalam pertumbuhan dan metabolisme tanaman. maka kekurangan mengindikasikan pengurangan secara sebagian besar umum proses metabolisme, seperti pembelahan dan pembesaran sel yang berpengaruh pada diameter batang.

Jumlah Daun (helai)

Hasil analisis ragam memperlihatkan bahwa pemberian pupuk fosfor serta interaksi pupuk fosfor dan varietas berpengaruh tidak nyata terhadap jumlah daun, namun untuk varietas memperlihatkan pengaruh nyata

Tabel 2. Rata-rata diameter pangkal batang (cm) beberapa varietas sorgum yang diberi pupuk fosfor.

Dosis pupuk fosfor		Varietas Sorgum			
Dosis pupuk iosioi	Kawali	Numbu	Pahat	Mandau	
S1 (45 kg/ha)	2,34 ^{a A}	2,22 ^{a A}	2,15 ^{a A}	2,28 ^{a A}	
S2 (90 kg/ha)	2,37 ^{a A}	2,25 ^{a A}	$2,43^{aA}$	2,29 ^{a A}	
S3 (135 kg/ha)	2,59 a A	2,33 a A	2,26 a A	2,37 a A	

Angka yang diikuti huruf besar pada kolom yang sama dan huruf kecil yang sama pada baris yang sama adalah berbeda tidak nyata pada uji jarak berganda Duncan taraf 5%.

(Lampiran 4.3). Rata-rata jumlah daun beberapa varietas sorgum setelah dilakukan uji lanjut dengan uji jarak berganda Duncan pada taraf 5% dapat dilihat pada Tabel 3.

pembentukan sel-sel baru utuk pertumbuhan daun. Ismail, (2013) menyatakan bahwa unsur hara yang cukup akan menunjang pertumbuhan organ tanaman, termasuk jumlah daun

Tabel 3. Rata-rata jumlah daun (helai) beberapa varietas sorgum yang diberi pupuk fosfor.

Dosis pupuk fosfor —		Varietas So	orgum	
	Kawali	Numbu	Pahat	Mandau
S1 (45 kg/ha)	11,93 ^{a A}	12,00 ^{a A}	10,27 ^{a A}	10,67 ^{a A}
S2 (90 kg/ha)	12,80 ^{a A}	$12,27^{abA}$	10,53 ^{c A}	11,53 ^{b A}
S3 (135 kg/ha)	12,20 ^{a A}	11,93 ^{a A}	10,00 ^{c A}	11,07 ^{b A}

Angka yang diikuti huruf besar pada kolom yang sama dan huruf kecil yang sama pada baris yang sama adalah berbeda tidak nyata pada uji jarak berganda Duncan taraf 5%.

Hasil pengamatan jumlah daun pada Tabel 3. memperlihatkan bahwa peningkatan dosis pupuk fosfor tidak meningkatkan jumlah daun tanaman sorgum secara nyata pada semua varietas yang diteliti. Pemberian pupuk fosfor 45 kg/ha tidak memperlihatkan perbedaan jumlah daun secara nyata pada semua varietas yang diteliti, tetapi pada pemberian dosis fosfor 90 kg/ha dan 135 kg/ha, varietas Kawali, Numbu dan Mandau memiliki jumlah daun yang lebih banyak secara nyata dibandingkan varietas Pahat.

Berbedanya jumlah daun pada masing-masing varietas disebabkan karena tiap varietas memiliki respon tanaman, menurut Gardner dkk. (1991) jumlah daun dipengaruhi oleh genetik tanaman dan lingkungan tempat tumbuh tanaman. Hal ini juga didukung oleh Goldsworthy dan Fisher (1992) yang menyatakan bahwa jumlah daun sangat bervariasi tergantung varietasnya.

Jumlah Ruas per Tanaman (ruas)

Hasil analisis ragam memperlihatkan bahwa pemberian pupuk fosfor, varietas serta interaksi fosfor dan varietas pupuk tidak berpengaruh nyata terhadap jumlah ruas per tanaman (Lampiran 4.4). Rata-rata jumlah ruas per tanaman beberapa varietas sorgum setelah dilakukan uji

Tabel 4. Rata-rata ruas per tanaman (ruas) beberapa varietas sorgum yang diberi pupuk fosfor.

Dosis pupuk fosfor	Varietas Sorgum			
	Kawali	Numbu	Pahat	Mandau
S1 (45 kg/ha)	12,73 ^{a A}	12,47 ^{a A}	11,20 ^{b A}	10,60 ^{b A}
S2 (90 kg/ha)	13,00 ^{a A}	13,00 ^{a A}	11,40 ^{b A}	11,93 ^{b A}
S3 (135 kg/ha)	13,20 ^{a A}	12,73 ^{a A}	10,67 b A	17,60 ^{a A}

Angka yang diikuti huruf besar pada kolom yang sama dan huruf kecil yang sama pada baris yang sama adalah berbeda tidak nyata pada uji jarak berganda Duncan taraf 5%.

yang berbeda terhadap pemupukan fosfor. Fosfor mempengaruhi

lanjut dengan uji jarak berganda Duncan pada taraf 5% dapat dilihat pada Tabel 4.

Hasil pengamatan jumlah ruas tanaman pada Tabel per memperlihatkan bahwa peningkatan dosis pupuk fosfor tidak meningkatkan jumlah ruas per tanaman pada masingmasing varietas secara nyata. Hal ini memberikan indikasi bahwa jumlah ruas per tanaman tidak dipengaruhi oleh peningkatan pemberian pupuk fosfor. Pemberian dosis fosfor 45 kg/ha dan 90 kg/ha pada varietas Kawali dan Numbu menunjukkan jumlah daun lebih banyak secara nyata dibanding varietas Pahat dan Mandau, tetapi pemberian dosis 135 kg/ha tidak memberikan perbedaan pada jumlah ruas secara nyata pada semua varietas vang diteliti.

Hal ini disebabkan karena selain pengaruh lingkungan jumlah ruas per tanaman juga dipengaruhi oleh faktor genetik. Pada penelitian ini tanaman telah mencapai batas genetik dalam menghasilkan jumlah ruas per tanaman. Hal ini didukung oleh pendapat Goldsworthy dan Fisher (1992) yang menyatakan bahwa jumlah ruas-ruas yang terbentuk pada tanaman merupakan variasi genetik yang terdapat pada suatu varietas yang digunakan.

4.5. Umur Berbunga (HST)

Hasil analisis ragam memperlihatkan bahwa pemberian pupuk fosfor serta varietas berpengaruh nyata terhadap umur berbunga, namun untuk interaksi pupuk fosfor dengan varietas memperlihatkan pengaruh tidak nyata (Lampiran 4.5). Rata-rata umur berbunga beberapa varietas sorgum setelah dilakukan uji lanjut dengan uji

jarak berganda Duncan pada taraf 5% dapat dilihat pada Tabel 5.

Hasil pengamatan umur berbunga pada Tabel 5 memperlihatkan bahwa peningkatan dosis pupuk fosfor dari 45 kg/ha, 90 kg/ha sampai 135 kg/ha tidak mempercepat umur berbunga pada varietas Kawali, Numbu, Mandau dan Pahat. Pemberian dosis fosfor sebanyak 45 kg/ha, 90 kg/ha dan 135 kg/ha memperlihatkan bahwa umur berbunga varietas Kawali dan Mandau nyata lebih cepat dibanding varietas Numbu dan Hal ini disebabkan umur Pahat. berbunga pada masing-masing varietas lebih dipengaruhi oleh faktor genetik tanaman. Berdasarkan hasil penelitian menunjukkan bahwa dengan pemberian fosfor umur berbunga masing-masing varietas meniadi lebih dibandingkan dengan deskripsi terutama Kawali dan Mandau.. Hal ini sesuai dengan pernyataan Sianturi (2008), bahwa fosfor merangsang pembentukan bunga, buah dan biji bahkan mampu mempercepat pemasakan buah menjadi lebih bernas.

Rahmawati (2003) menjelaskan bahwa di dalam jaringan tanaman fosfor berperan dalam hampir semua proses reaksi biokimia. Fosfor juga menjadi bagian dalam sintesis protein, terutama yang terdapat pada jaringan hijau, sintesis karbohidrat, memacu pembentukan bunga. Poerwanto (2003) menyatakan bahwa fungsi fosfor sebagai penyusun karbohidrat dan penyusun asam amino yang merupakan faktor internal yang mempengaruhi induksi pembungaan.

Tabel 5. Rata-rata umur berbunga (HST) beberapa varietas sorgum yang diberi pupuk fosfor.

Dosis pupuk fosfor		Vari	ietas Sorgum	_
Dosis pupuk tostoi	Kawali	Numbu	Pahat	Mandau
S1 (45 kg/ha)	61,33 ^{b A}	64,00 ^{a A}	63,67 ^{a A}	60,00 ^{b A}
S2 (90 kg/ha)	60,33 ^{b A}	64,00 ^{a A}	63,67 ^{a A}	59,67 ^{b A}
S3 (135 kg/ha)	60,33 ^{b A}	63,67 ^{a A}	61,00 ^{a A}	59,67 bA

Umur Panen (HST)

Hasil analisis ragam memperlihatkan bahwa pemberian pupuk fosfor serta interaksi pupuk fosfor dan varietas berpengaruh tidak nyata terhadap umur panen, namun untuk varietas memperlihatkan pengaruh nyata (Lampiran 4.6). Rata-rata umur panen beberapa varietas sorgum dilakukan uji lanjut dengan uji jarak berganda Duncan pada taraf 5% dapat dilihat pada Tabel 6.

peningkatan dosis pupuk fosfor, varietas Pahat dan Mandau lebih cepat umur panennya karena faktor genetik tanaman. Hal ini sesuai dengan deskripsi varietas (Lampiran 4.) yang menunjukkan bahwa varietas Mandau memiliki umur panen yang lebih cepat daripada varietas Kawali dan Numbu dan Pahat.

Hardjowigeno (1995) mengatakan bahwa fosfor dalam tanaman berfungsi meningkatkan pembelahan sel, mempercepat pembentukan biji, mempercepat pematangan biji dan memperbaiki kualitas produksi.

Tabel 6. Rata-rata umur panen (HST) beberapa varietas sorgum yang diberi pupuk fosfor.

Dosis pupuk fosfor		Varieta	as Sorgum	
Dosis pupuk tostot	Kawali	Numbu	Pahat	Mandau
S1 (45 kg/ha)	105,33 ^{a A}	105,00 ^{a A}	93,67 ^{b A}	91,33 ^{b A}
S2 (90 kg/ha)	105,67 ^{a A}	104,00 ^{a A}	93,33 ^{b A}	90,33 ^{b A}
S3 (135 kg/ha)	105,00 ^{a A}	103,66 ^{a A}	92,67 ^{b A}	90,67 ^{b A}

Angka yang diikuti huruf besar pada kolom yang sama dan huruf kecil yang sama pada baris yang sama adalah berbeda tidak nyata pada uji jarak berganda Duncan taraf 5%.

Hasil pengamatan umur panen pada Tabel 6. memperlihatkan bahwa peningkatan pemberian dosis fosfor dari 45 kg/ha, 90 kg/ha sampai 135 kg/ha tidak mempercepat umur panen tanaman sorgum secara nyata pada semua varietas yang diteliti. Pemberian fosfor sebanyak 45 kg/ha, 90 kg/ha dan 135 kg/ha pada varietas Pahat dan Mandau nyata lebih cepat dibanding varietas Kawali dan Numbu. Selain karena adanya pengaruh

Panjang Malai (cm)

Hasil analisis ragam memperlihatkan bahwa pemberian pupuk fosfor serta interaksi pupuk fosfor dan varietas berpengaruh tidak nyata terhadap panjang malai, namun untuk varietas memperlihatkan pengaruh nyata (Lampiran 4.7). Rata-rata panjang malai varietas beberapa sorgum dilakukan uji lanjut dengan uji jarak berganda Duncan pada taraf 5% dapat dilihat pada Tabel 7.

Tabel .7 Rata-rata panjang malai (cm) beberapa varietas sorgum yang diberi pupuk fosfor.

Dosis pupuk fosfor		Varietas Sorgum			
	Kawali	Numbu	Pahat	Mandau	
S1 (45 kg/ha)	25,53 ^{a A}	17,93 ^{b A}	27,40 ^{a A}	25,07 ^{a A}	
S2 (90 kg/ha)	25,73 ^{a A}	18,37 ^{b A}	27,40 ^{a A}	25,40 ^{a A}	
S3 (135 kg/ha)	26,00 ^{a A}	$22,60^{\text{ bA}}$	29,47 ^{a A}	27,47 ^{a A}	

Hasil pengamatan panjang malai pada Tabel 7. memperlihatkan bahwa peningkatan dosis fosfor dari 45 kg/ha, kg/ha tidak kg/ha dan 135 meningkatkan panjang malai pada semua varietas yang diteliti. Berbedanya panjang malai pada masing-masing varietas disebabkan karena tiap varietas memiliki karakteristik sendiri dan respon yang berbeda terhadap pemupukan fosfor.

Pemberian dosis pupuk fosfor sebanyak 45 kg/ha, 90 kg/ha dan 135 kg/ha pada varietas Kawali, Pahat dan Mandau nyata lebih panjang malainya dibanding varietas Numbu. Dari hasil penelitian terlihat bahwa panjang malai lebih dipengaruhi oleh faktor genetik. Secara umum sorgum yang memiliki malai lebih panjang potensial untuk dikembangkan sebab terdapat korelasi posistif antara panjang malai dan jumlah biji per malai pada tanaman sorgum (Suwelo dan Sihwinayun, 1979). Namun demikian, kepadatan, panjang diameter malai sorgum dapat pula bervariasi antar varietas sehingga selalu panjang malai tidak mencerminkan jumlah biji per malai (Dogget ,1970).

Berat Biji per Malai (g)

Hasil analisis ragam memperlihatkan bahwa varietas dan pemberian pupuk fosfor serta interaksi pupuk fosfor dengan varietas berpengaruh tidak nyata terhadap berat biji per malai (Lampiran 4.8). Rata-rata berat biji per malai beberapa varietas sorgum setelah dilakukan uji lanjut dengan uji jarak berganda Duncan pada taraf 5% dapat dilihat pada Tabel 8.

Tabel 8. menunjukkan bahwa peningkatan pemberian pupuk fosfor dari 45 kg/ha sampai 90 kg/ha dan 135 kg/ha dapat meningkatkan berat biji per malai secara nyata pada varietas Kawali, Numbu dan Mandau, tetapi pada varietas Kawali terjadi peningkatan setelah diberi pupuk fosfor sebanyak 135 kg/ha. Pemberian fosfor 45 kg/ha, 90 kg/ha dan 135 kg/ha pada varietas Kawali, Pahat dan Mandau berat biji per malainya nyat lebih berat dibanding varietas Numbu. Varietas Numbu memiliki berat biji permalai terendah dibanding varietas

Tabel .8 Rata-rata berat biji per malai (g) beberapa varietas sorgum yang diberi pupuk fosfor.

D : 1 C C	Varietas Sorgum			
Dosis pupuk fosfor	Kawali	Numbu	Pahat	Mandau
S1 (45 kg/ha)	91,54 ^{a B}	75,28 ^{b B}	89,57 ^{a B}	82,91 ^{a B}
S2 (90 kg/ha)	95,05 ^{a B}	85,57 bA	105,34 ^{a A}	98,43 ^{a A}
S3 (135 kg/ha)	101,78 ^{a A}	88,23 b A	97,29 a A	103,09 a A

lainnya karenakan panjang malai varietas Numbu lebih pendek dibanding varietas lainnya (Tabel 7).

Hasil penelitian ini menyatakan bahwa respon masing-masing varietas berbeda terhadap pemberian berbagai dosis pupuk fosfor. Berat biji per malai sebagai indikator kualitas biji sangat penting peranannya dalam mengukur daya hasil suatu genotip tanaman karena biji yang berbobot adalah biji yang berkualitas dan untuk lavak dikembangkan. Salisbury dan Ross (1995) menyatakan bahwa pembentukan dan pengisian biji sangat ditentukan oleh kemampuan genetik tanaman yang berhubungan dengan sumber asimilat dan tempat penumpukkannya pada tanaman. Hal ini sesuai dengan pernyataan Indranada (1989) yang meyatakan fosfor merupakan bagian integral tanaman dibagian penyimpanan (storage) dan pemindahan (transfer) Fosfor energi. terlibat dalam penangkapan **ADP** (adenosine diphosphate) (adenosin atau ATP triphosphate), dipakai untuk menjalankan reaksi-reaksi yang memerlukan energi, seperti pembentukan sukrosa dan tepung.

Berat 1000 Biji (g)

Hasil analisis ragam memperlihatkan bahwa pemberian pupuk fosfor serta interaksi pupuk fosfor dan varietas berpengaruh tidak nyata terhadap berat 1000 biji, namun untuk varietas memperlihatkan pengaruh nyata (Lampiran 4.9). Rata-rata berat 1000 biji berbagai varietas sorgum setelah dilakukan uji lanjut dengan uji jarak berganda Duncan pada taraf 5% dapat dilihat pada Tabel 9.

Hasil pengamatan berat 1000 biji pada Tabel 9 menunjukkan bahwa peningkatan dosis pupuk fosfor dari 45 kg/ha, 90 kg/ha sampai 135 kg/ha tidak meningkatkan berat 1000 biji pada masing-masing varietas yang diuji secara nyata. Pemberian fosfor 45 kg/ha, 90 kg/ha dan 135 kg/ha pada varietas Numbu nyata lebih tinggi berat 1000 bijinya dari varietas Kawali, Pahat dan Mandau.

Varietas Numbu memiliki ukuran biji yang lebih besar dibandingkan dengan varietas yang lainnya, bahkan berat 1000 biji varietas Numbu pada penelitian ini yaitu 57,10 g, jauh lebih berat dibandingkan dengan berat 1000 biji pada deskripsi varietas Numbu yaitu 37 g. Hal ini disebabkan karena berat 1000 biji dipengaruhi oleh faktor genetik tanaman. Sesuai dengan pendapat Kamil (1997) yaitu tinggi rendahnya berat biji tergantung pada banyak atau sedikitnya bahan kering yang terdapat di dalam biji, bentuk biji dan ukuran biji yang dipengaruhi oleh genetik tanaman.

Tabel .9 Rata-rata berat 1000 biji (g) beberapa varietas sorgum yang diberi pupuk fosfor.

Dosis pupuk fosfor		Varietas Sorgum			
Dosis pupuk iosioi	Kawali	Numbu	Pahat	Mandau	
S1 (45 kg/ha)	36,59 ^{b A}	53,98 ^{a A}	35,68 ^{b A}	38,91 ^{b A}	
S2 (90 kg/ha)	39,04 ^{b A}	55,16 ^{a A}	38,01 ^{b A}	40,62 ^{b A}	
S3 (135 kg/ha)	42,98 ^{b A}	57,10 ^{a A}	40,64 ^{b A}	40,28 ^{b A}	

Hasil per m² (g)

Hasil analisis ragam memperlihatkan bahwa pemberian pupuk fosfor dan varietas berpengaruh nyata terhadap berat biji per m², tetapi interaksi antara pupuk dan varietas memperlihatkan pengaruh tidak nyata (Lampiran 4.10). Rata-rata hasil per m² berbagai varietas sorgum dilakukan uji lanjut dengan uji jarak berganda Duncan pada taraf 5% dapat dilihat pada Tabel 10.

Pemberian pupuk fosfor sebanyak 45 kg/ha pada varietas Kawali nyata lebih tinggi hasil per m² dibanding var ietas Numbu, Pahat dan Mandau. Pemberian fosfor 90 kg/ha dan 135 kg/ha pada varietas Kawali, Pahat dan Mandau nyata lebih tinggi hasil per m² dibanding varietas Numbu.

Pemberian pupuk fosfor memberikan perbedaan terhadap berat biji karena respon tanaman yang berbeda sesuai verietasnya. Menurut Gustian (1991),

Tabel .10 Rata-rata hasil per m² (g) beberapa varietas sorgum yang diberi pupuk fosfor.

Dosis pupuk fosfor		Varieta	is Sorgum	
Dosis pupuk tostoi	Kawali	Numbu	Pahat	Mandau
S1 (45 kg/ha)	797,34 ^{a B}	660,52 ^{b B}	686,76 ^{b B}	670,97 ^{b B}
S2 (90 kg/ha)	810,00 ^{b B}	696,81 ^{b B}	854,49 ^{a A}	876,39 ^{a A}
S3 (135 kg/ha)	903,61 ^{a A}	794,48 ^{b A}	860,32 ^{a A}	892,50 ^{a A}

Angka yang diikuti huruf besar pada kolom yang sama dan huruf kecil yang sama pada baris yang sama adalah berbeda tidak nyata pada uji jarak berganda Duncan taraf 5%.

Hasil pengamatan hasil per m² pada Tabel 10. memperlihatkan bahwa peningkatan dosis pupuk fosfor dari 45 kg/ha sampai 135 kg/ha meningkatkan berat biji per m² secara nyata pada varietas Kawali dan Numbu dibanding pemberian dosis 45 kg/ha dan 90 kg/ha. Sedangkan pada varietas Pahat dan Mandau diperoleh peningkatan hasil per m² secara nyata setelah diberi pupuk fosfor sebanyak 90 kg/ha.

tersedianya asimilat yang cukup akan meningkatkan bobot biji, semakin banyak cadangan makanan yang terdapat dalam biji maka semakin berat biji yang terbentuk. Menurut Gardner dkk. (1991) komposisi kimia biji dikendalikan secara genetis, namun juga dipengaruhi oleh lingkungan seperti irigasi, pemupukan dan pemeliharaan yang akan mempengaruhi komposisi karbohidrat, protein dan minyak dalam biji.

KESIMPULAN DAN SARAN Kesimpulan

Berdasarkan hasil penelitian yang dilakukan dapat disimpulkan bahwa:

- 1. Pemberian pupuk fosfor memberikan perbedaan yang nyata pada berbagai varietas yang diteliti. Pemberian dosis pupuk fosfor 90 kg/ha dan 135 kg/ha meningkatkan tinggi tanaman secara nyata pada varietas Numbu. Pemberian dosis pupuk fosfor 45 kg/ha dan 90 kg/ha meningkatkan jumlah ruas secara nyata pada varietas Kawali dan Numbu. Pemberian pupuk fosfor sebanyak 45 kg/ha, 90 kg/ha dan 135 kg/ha mempercepat umur panen secara nyata pada verietas Pahat dan Mandau.
- 2. Pemberian dosis pupuk fosfor juga memberikan perbedaan yang nyata terhadap produksi beberapa varietas sorgum vang diteliti. Pemberian dosis pupuk fosfor 90 kg/ha memberikan hasil produksi tertinggi pada varietas Pahat yaitu sebanyak 8,5 ton/ha dan Mandau sebanyak 8,7 ton/ha. Pemberian dosis pupuk fosfor 135 kg/ha memberikan hasil produksi ertinggi pada varietas Kawali yaitu sebanyak 9,0 ton/ha.
- 3. Peningkatan dosis fosfor dari 45 kg/ha sampai 90 kg/ha memberikan peningkatan produksi tertinggi pada varietas Pahat dan Mandau, sedangkan peningkatan pemberian pupuk fosfor sampai 135 kg/ha memberikan peningkatan produksi yang tertinggi untuk varietas Kawali dan Numbu.

Saran

Berdasarkan hasil penelitian untuk memperoleh hasil/produksi yang lebih tinggi sebaiknya menggunakan varietas Pahat dan Mandau yang diberi pupuk fosfor sebanyak 90 kg/ha dan untuk varietas Kawali dan Numbu sebaiknya diberi pupuk fosfor sebanyak 135 kg/ha.

DAFTAR PUSTAKA

- Beti, Y.A., Ispandi dan Sudaryono. 1990. **Sorgum.** Monografi No. 5. Balai Penelitian Tanaman Pangan, Malang.
- Dogget, H. 1970. **Sorghum**. Longman. London.
- Gardner, F.P., R.B. Pearce dan R.L Mitchell. 1991. Fisiologi tanaman budidaya (Edisi Terjemahan Oleh Herawati Susilo dan Subiyanto). Jakarta: Universitas Indonesia Press.
- Goldsworthy dan Fisher. 1992. **Fisiologi Tanaman Budidaya Tropik**.
 Gadjah Mada University Press.
 Yogyakarta.
- Gustian. 1991. Pengaruh penempatan kedalaman pupuk fosfor terhadap pertumbuhan dan produksi tanaman jagung. Skripsi Fakultas Pertanian Universitas Riau. Pekanbaru.
- Handayani dan Ernita. 2008. Pemanfaatan iamur pelarut fosfat dan mikoriza sebagai alternative pengganti pupuk fosfat pada tanah ultisol kabupaten Langkat Sumatera Utara. Universitas Muslim Nusantara Al Wasliyah Medan.
- Hardjowigeno, S. 1995. **Ilmu tanah**. Mediatama Sarana Perkasa. Jakarta.

- Indranada, H. K. 1989. **Pengelolaan Kesuburan Tanah**. Bina Aksara.
 Jakarta.
- Islami, T. dan W.H. Utomo. 1995. Hubungan Tanah, Air dan Tanaman. IKIP Semarang Press.
- Ismail, G. I. dan A. Kodir. 1977. **Cara Bercocok Tanam Sorgum**.
 Bulletin Teknik Lembaga Pusat
 Penelitian Pertanian Bogor
- Ismail. F. 2013, Pengaruh pupuk phosfor terhadap pertumbuhan jagung hibrida. Skripsi: Fakultas Pertanian Universitas Negeri Gorontalo.
- Kamil, J. 1997. **Teknologi Benih.** Angkasa Raya. Padang.
- Kembal, A.E. dan O.J. Webster. 1996.

 Manifestasion of Hybrid Vigour in
 Grain Sorghum and Relation
 among the Components of Yield,
 Weight per Bushel and Height.
- Leiwakabessy, F.M. & A. Sutandi. 2004. **Pupuk dan Pemupukan.** Bogor: Depertemen Ilmu Tanah Fakultas Pertanian IPB.
- Mangoendidjojo, W. 2008. Dasar-Dasar Pemuliaan Tanaman.Kanisius. Yogyakarta
- Martin, J.H. 1970. History and Classification of Sorghum. In J. S. Wall and W. M. Ross (Eds.). Sorghum Production and Utilization. The Avi Publishing Co. Inc. Westport Connecticut.
- Mattjik, A.A. dan I.M. Sumertajaya. 2006. Perancangan Percobaan dengan Aplikasi SAS dan Minitab. Institut Pertanian Bogor Press.
- Mudita, I.W. 2012. Sorgum. http://www.tanamankampung.blogs pot.com. Diakses pada tanggal 06 Maret 2013.
- Rahmawati. 2003. **Pengaruh Fosfor** (P) terhadap Proses Fisiologi

- Tanaman http://dian-ayuning-rakhmawati.blogspot.com/2011/11
 /pengaruh-fosfor-pterhadap-proses.html [27 Februari 2015]
- Roesmarkam, S., Subandi, E. Muchlis. 1985. **Hasil Penelitian Pemuliaan Sorgum**. Puslitbang, Bogor. Bogor.
- Salisbury, F.B. and C.W. Ross. 1995. **Plant Physiology**. Third Edition.

 Wadsworth Publishing Company,
 Belmont, California.
- Sirappa, M.P. 2003. Prospek pengembangan sorgum di Indonesia sebagai komoditas alternatif untuk pangan, pakan dan industri. Jurnal Litbang Pertanian.
- Soepardi, G. 1983. **Sifat dan Ciri Tanah.** Dept. Ilmu Tanah dan Pemupukan. IPB.
- Sumantri A., Hanyokrowati, dan B. Guritno. 1996. Prospek Pengembangan Sorgum Manis untuk Menunjang Pembangunan Agroindustri di Lahan Kering. Makalah dalam Lokakarya Nasional Pertanian Lahan Kering Beberapa Kawasan Pembangunan Ekonomi Terpadu di Kawasan Timur Indonesia.
- Suwelo, I.S dan Y. Sihwinayun. 1979. Penguiian terhadap dava adaptasi beberapa varietas sorgum dalam kondisi pengapuran dan pemupukkan fosfat. Dalam bagian pemuliaan lp3 bogor (ed). Laporan Kemajuan Penelitian Pemuliaan Jagung, Sorgum dan Gandum MK 1978.
- Terry, N. and A. Ulrich. 1993. Effect of Phosphorus *Deficiency on the Photosynthesis and Respiration of Leaves in Sugar Beet*. Plant Physiology.